Husemöller | Elliptic Curves | Buch | 978-0-387-95490-5 | sack.de

Buch, Englisch, 490 Seiten, Format (B × H): 161 mm x 241 mm, Gewicht: 1980 g

Reihe: Graduate Texts in Mathematics

Husemöller

Elliptic Curves


2. Auflage 2004
ISBN: 978-0-387-95490-5
Verlag: Springer

Buch, Englisch, 490 Seiten, Format (B × H): 161 mm x 241 mm, Gewicht: 1980 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-0-387-95490-5
Verlag: Springer


There are three new appendices, one by Stefan Theisen on the role of Calabi– Yau manifolds in string theory and one by Otto Forster on the use of elliptic curves in computing theory and coding theory. In the third appendix we discuss the role of elliptic curves in homotopy theory. In these three introductions the reader can get a clue to the far-reaching implications of the theory of elliptic curves in mathematical sciences. During the ?nal production of this edition, the ICM 2002 manuscript of Mike Hopkins became available. This report outlines the role of elliptic curves in ho- topy theory. Elliptic curves appear in the form of the Weierstasse equation and its related changes of variable. The equations and the changes of variable are coded in an algebraic structure called a Hopf algebroid, and this Hopf algebroid is related to a cohomology theory called topological modular forms. Hopkins and his coworkers have used this theory in several directions, one being the explanation of elements in stable homotopy up to degree 60. In the third appendix we explain how what we described in Chapter 3 leads to the Weierstrass Hopf algebroid making a link with Hopkins’ paper.

Husemöller Elliptic Curves jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


to Rational Points on Plane Curves.- Elementary Properties of the Chord-Tangent Group Law on a Cubic Curve.- Plane Algebraic Curves.- Elliptic Curves and Their Isomorphisms.- Families of Elliptic Curves and Geometric Properties of Torsion Points.- Reduction mod p and Torsion Points.- Proof of Mordell’s Finite Generation Theorem.- Galois Cohomology and Isomorphism Classification of Elliptic Curves over Arbitrary Fields.- Descent and Galois Cohomology.- Elliptic and Hypergeometric Functions.- Theta Functions.- Modular Functions.- Endomorphisms of Elliptic Curves.- Elliptic Curves over Finite Fields.- Elliptic Curves over Local Fields.- Elliptic Curves over Global Fields and ?-Adic Representations.- L-Function of an Elliptic Curve and Its Analytic Continuation.- Remarks on the Birch and Swinnerton-Dyer Conjecture.- Remarks on the Modular Elliptic Curves Conjecture and Fermat’s Last Theorem.- Higher Dimensional Analogs of Elliptic Curves: Calabi-Yau Varieties.- Families of Elliptic Curves.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.