Buch, Englisch, 278 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 464 g
Reihe: Texts in Theoretical Computer Science. An EATCS Series
Sequential Decisions Based on Algorithmic Probability
Buch, Englisch, 278 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 464 g
Reihe: Texts in Theoretical Computer Science. An EATCS Series
ISBN: 978-3-642-06052-6
Verlag: Springer
This book presents sequential decision theory from a novel algorithmic information theory perspective. While the former is suited for active agents in known environment, the latter is suited for passive prediction in unknown environment. The book introduces these two different ideas and removes the limitations by unifying them to one parameter-free theory of an optimal reinforcement learning agent embedded in an unknown environment. Most AI problems can easily be formulated within this theory, reducing the conceptual problems to pure computational ones. Considered problem classes include sequence prediction, strategic games, function minimization, reinforcement and supervised learning. The discussion includes formal definitions of intelligence order relations, the horizon problem and relations to other approaches.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
Weitere Infos & Material
Short Tour Through the Book.- Simplicity & Uncertainty.- Universal Sequence Prediction.- Agents in Known Probabilistics Environments.- The Universal Algorithmic Agent AIXI.- Important Environmental Classes.- Computational Aspects.- Discussion.