Hvidsten | Exploring Geometry | Buch | 978-1-4987-6080-5 | sack.de

Buch, Englisch, 558 Seiten, Format (B × H): 241 mm x 164 mm, Gewicht: 1074 g

Reihe: Textbooks in Mathematics

Hvidsten

Exploring Geometry


2. New Auflage 2016
ISBN: 978-1-4987-6080-5
Verlag: Taylor & Francis Inc

Buch, Englisch, 558 Seiten, Format (B × H): 241 mm x 164 mm, Gewicht: 1074 g

Reihe: Textbooks in Mathematics

ISBN: 978-1-4987-6080-5
Verlag: Taylor & Francis Inc


Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed.

Features:

- Second edition of a successful textbook for the first undergraduate course

- Every major concept is introduced in its historical context and connects the idea with real life

- Focuses on experimentation

- Projects help enhance student learning

- All major software programs can be used; free software from author

Hvidsten Exploring Geometry jetzt bestellen!

Zielgruppe


Academic


Autoren/Hrsg.


Weitere Infos & Material


Geometry and the Axiomatic Method

Early Origins of Geometry

Thales and Pythagoras

Project 1 - The Ratio Made of Gold

The Rise of the Axiomatic Method

Properties of the Axiomatic Systems

Euclid's Axiomatic Geometry

Project 2 - A Concrete Axiomatic System

Euclidean Geometry

Angles, Lines, and Parallels ANGLES, LINES, AND PARALLELS 51

Congruent Triangles and Pasch's Axiom

Project 3 - Special Points of a Triangle

Measurement and Area

Similar Triangles

Circle Geometry

Project 4 - Circle Inversion and Orthogonality

Analytic Geometry

The Cartesian Coordinate System

Vector Geometry

Project 5 - Bezier Curves

Angles in Coordinate Geometry

The Complex Plane

Birkhoff's Axiomatic System

Constructions

Euclidean Constructions

Project 6 - Euclidean Eggs

Constructibility

Transformational Geometry

Euclidean Isometries

Reflections

Translations

Rotations

Project 7 - Quilts and Transformations

Glide Reflections

Structure and Representation of Isometries

Project 8 - Constructing Compositions

Symmetry

Finite Plane Symmetry Groups

Frieze Groups

Wallpaper Groups

Tilting the Plane

Project 9 - Constructing Tesselations

Hyperbollic Geometry

Background and History

Models of Hyperbolic Geometry

Basic Results in Hyperbolic Geometry

Project 10 - The Saccheri Quadrilateral

Lambert Quadrilaterals and Triangles

Area in Hyperbolic Geometry

Project 11 - Tilting the Hyperbolic Plane

Elliptic Geometry

Background and History

Perpendiculars and Poles in Elliptic Geometry

Project 12 - Models of Elliptic Geometry

Bas


Michael Hvidsten is Professor of Mathematics at Gustavus Adlophus College in St. Peter, Minnesota. He holds a PhD from the University of Illinois. His research interests include minimal surfaces, computer graphics and scientific visualizations, and software development. Geometry Explorer software is available free from his website.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.