Buch, Englisch, Band 63, 614 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 943 g
Volume I: Martingales and Littlewood-Paley Theory
Buch, Englisch, Band 63, 614 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 943 g
ISBN: 978-3-319-83961-5
Verlag: Springer International Publishing
The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem.
Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes.
The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Mathematische Analysis Integralrechnungen- und -gleichungen
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
Weitere Infos & Material
1.Bochner Spaces.- 2.Operators on Bochner Spaces.- 3.Martingales.- 4.UMD spaces.- 5. Hilbert transform and Littlewood-Paley Theory.- 6.Open Problems.- A.Mesaure Theory.- B.Banach Spaces.- C.Interpolation Theory.- D.Schatten classes.