Buch, Englisch, 183 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 459 g
Reihe: Internet of Things
Buch, Englisch, 183 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 459 g
Reihe: Internet of Things
ISBN: 978-3-031-60026-5
Verlag: Springer Nature Switzerland
This book provides the latest developments in activity recognition and prediction, with particular focus on the Internet of Things. The book covers advanced research and state of the art of activity prediction and its practical application in different IoT related contexts, ranging from industrial to scientific, from business to daily living, from education to government and so on. New algorithms, architectures, and methodologies are proposed, as well as solutions to existing challenges with a focus on security, privacy, and safety. The book is relevant to researchers, academics, professionals and students.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion
Weitere Infos & Material
Introduction.- Methodology for human activity recognition based on wearable sensor networks.- Efficient Sensing and Classification for Extended Battery Life.- Multi-user activity monitoring based on contactless sensing.- An efficient approach exploiting Ensemble Learning for Human Activity Recognition.- Activity Recognition Using 2-D LiDAR based on Improved MobileNet.- Habit mining through process-mining techniques. Survey and research challenges.- The role of ML in Activity Recognition in the Industry 4.0.- IoT Based HAR patterns using Sensors based Approach in smart environment and enabled assistive technologies.- Trace2AR: a novel embedding for the detection of complex activity recognition.- Situation Aware Wearable Systems for Human Activity Recognition.- Conclusion.