Ignatiev / Lyashenko | Heteromagnetic Microelectronics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 506 Seiten

Ignatiev / Lyashenko Heteromagnetic Microelectronics

Microsystems of Active Type
1. Auflage 2010
ISBN: 978-1-4419-6002-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Microsystems of Active Type

E-Book, Englisch, 506 Seiten

ISBN: 978-1-4419-6002-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Devoted to heteromagnetic microelectronics, this book is based on original material from the author's programs of designing heteromagnetic microsystems of various types. It includes pioneering results of research on magnetoelectronics of millimetric waves.

Alexander Ignatiev is a professor and head of the general physics department at Saratov State University, Russia. He is the main designer of critical technologies in JSC 'Research Institute-Tantal,' an expert in the field of radiophysics, including quantum radiophysics, and the author of 4 monographs and more than 200 publications. Dr. Ignatiev holds 20 patents in directions noise processes in generating beam devices of M-type of a millimetric range including intellectual development of heteromagnetic technologies and development of double purpose devices.

Ignatiev / Lyashenko Heteromagnetic Microelectronics jetzt bestellen!

Weitere Infos & Material


1;Foreword
;6
2;Introduction;8
3;Contents;14
4;Abbreviation;20
5;Symbols;24
6;Part I Experimental Investigation of the Properties of Oscillating Heteromagnetic Structures at Low, Medium, and High Power Levels;26
6.1;1 Spectra of Regular and Noise Signals;27
6.1.1;1.1 General Remarks: Generalized Models;27
6.1.2;1.2 Regimes of Low and Middle Power Levels;40
6.1.3;1.3 Regimes of High Power Level;46
6.1.3.1;1.3.1 Control by Magnetic Fieldand High-Frequency Signals Power;46
6.1.3.2;1.3.2 Multifunctional Properties of Powerful Heteromagnetic Oscillators;53
6.1.4;1.4 Signal Spectra of Heteromagnetic Interactions on High Power Levels;69
6.2;2 Properties of Structures with Ferrites of Different Magnetizations;84
6.2.1;2.1 General Remarks;84
6.2.2;2.2 Structures with Ferrite KG-8;85
6.2.2.1;2.2.1 Angle of Orientation of FMCR =45;90
6.2.2.2;2.2.2 Angle of Orientation of FMCR =90;94
6.2.3;2.3 Structures with Ferrite KG-15;99
6.2.3.1;2.3.1 Angle of Orientation of FMCR =0;99
6.2.3.2;2.3.2 Angle of Orientation of FMCR =45;106
6.2.3.3;2.3.3 Angle of Orientation of FMCR =90;110
6.2.4;2.4 Structures with Ferrite KG-50;114
6.2.4.1;2.4.1 Angle of Orientation of FMCR =0;114
6.2.4.2;2.4.2 Angle of Orientation of FMCR =45;118
6.2.4.3;2.4.3 Angle of Orientation of FMCR =90;122
6.2.5;2.5 Structures with Ferrites KG-65 and KG-140;125
6.2.5.1;2.5.1 Angle of Orientation of FMCR =90;125
6.2.6;2.6 Generalization of Experimental Data;128
6.3;3 Control Over Energy and Spectral Characteristics;130
6.3.1;3.1 Control Over Characteristics of Spectral-Pure Signals;130
6.3.1.1;3.1.1 Structures with Various Orientations in a Magnetic Field;130
6.3.1.1.1;3.1.1.1 FMCR from KG-8;130
6.3.1.1.2;3.1.1.2 FMCR of KG-15;133
6.3.1.1.3;3.1.1.3 FMCR of KG-50;134
6.3.1.2;3.1.2 Structures with Ferrites of Various Magnetization;137
6.3.1.2.1;3.1.2.1 FMCR Orientation Angle =0;138
6.3.1.2.2;3.1.2.2 FMCR Orientation Angle =45;141
6.3.1.2.3;3.1.2.3 FMCR Orientation Angle =90;144
6.3.2;3.2 Control Over Characteristics of Pseudonoise and Noise Signals;147
6.3.2.1;3.2.1 Structures with Various Orientations in a Magnetic Field;147
6.3.2.1.1;3.2.1.1 FMCR of KG-8;147
6.3.2.1.2;3.2.1.2 FMCR of KG-15;150
6.3.2.1.3;3.2.1.3 FMCR of KG-50;152
6.3.2.2;3.2.2 Structures with Ferrites of Various Magnetization;154
6.3.2.2.1;3.2.2.1 FMCR Orientation Angle =0;154
6.3.2.2.2;3.2.2.2 FMCR Orientation Angle =45;156
6.3.2.2.3;3.2.2.3 FMCR Orientation Angle =90;160
6.3.3;3.3 Control Over Characteristics of Evenly Spaced Grids of Signal Frequencies;162
6.3.3.1;3.3.1 Structures with Various Orientations in a Magnetic Field;162
6.3.3.1.1;3.3.1.1 FMCR of KG-8;162
6.3.3.1.2;3.3.1.2 FMCR of KG-15;163
6.3.3.2;3.3.2 Structures with Ferrites of Various Magnetization;165
6.3.3.2.1;3.3.2.1 FMCR Orientation Angle =0;165
6.3.3.2.2;3.3.2.2 FMCR Orientation Angle =90;169
6.4;4 Generalization Control Characteristics in Generative Structures;171
6.4.1;4.1 Structure Characteristics with Various Orientations;171
6.4.1.1;4.1.1 Structures with KG-8 FMCR;171
6.4.1.2;4.1.2 Structures with KG-15 FMCR;172
6.4.1.3;4.1.3 Structures with KG-50 FMCR;175
6.4.2;4.2 Structure Characteristics with Various Magnetizations;177
6.4.2.1;4.2.1 FMCR Orientation Angle =0;179
6.4.2.2;4.2.2 FMCR Orientation Angle =45;181
6.4.2.3;4.2.3 FMCR Orientation Angle =90;181
6.4.3;4.3 Physical Mechanisms of Heteromagnetic Interactions;194
7;Part II Process Modeling in Heteromagnetic Structures;195
7.1;5 Heteromagnetic Oscillator;196
7.1.1;5.1 Equivalent Circuit of a High-Power Bipolar Transistor;196
7.1.2;5.2 Modeling of Static Characteristics of a Powerful Bipolar Transistor;202
7.1.3;5.3 Basic Model Equations;203
7.1.4;5.4 Calculation of Characteristics of Powerful Heteromagnetic Microwave Oscillators;206
7.1.5;5.5 Modeling of Complicated Regimes;212
7.2;6 Multicircuit Model of a Multifunctional Heteromagnetic Oscillator;219
7.2.1;6.1 Equivalent Circuit;219
7.2.2;6.2 Model Equations;222
7.2.3;6.3 Methods of Finalizing Equivalent Parameters of Transistor;225
7.2.4;6.4 Equivalent Circuit of a Multifunctional Heteromagnetic Oscillator;232
7.2.5;6.5 Oscillating Modes of Subharmonic Constituents;234
7.2.6;6.6 Oscillating Modes of Evenly Spaced Frequencies Spectra;243
7.2.7;6.7 Regimes of Pseudonoise Signals;246
8;Part III Calculation of Parameters of Heteromagnetic Structures;255
8.1;7 Calculation of Parameters of Transistors, Coupling Elements, Magnetotransistors in a Frequency Band Below 100GHz;256
8.1.1;7.1 Bipolar Transistor in Omnirange, UHF Range;256
8.1.1.1;7.1.1 General Data on Programs;257
8.1.1.2;7.1.2 Test Task;260
8.1.2;7.2 FET in Omnirange, UHF Range;261
8.1.2.1;7.2.1 Determination of Parameters of a FET Model with Schottky Gate;261
8.1.2.2;7.2.2 Method for Determination of Transistor Parameters;264
8.1.2.3;7.2.3 Test Task;265
8.1.3;7.3 Powerful FET in EHF Range;268
8.1.3.1;7.3.1 Model of EHF Transistor of HEMT-1;269
8.1.3.2;7.3.2 Model of EHF Transistor of HEMT-2;271
8.1.4;7.4 Magnetoelectronic Elements of LPL;272
8.1.4.1;7.4.1 Coupling Element in Omnirange, UHF Range;273
8.1.4.2;7.4.2 Coupling Element in Microwave Frequency, EHF Range;277
8.1.5;7.5 Powerful Bipolar Transistor in Microwave Frequency Range;279
8.1.6;7.6 Powerful Bipolar Heteromagnetic Transistor in Microwave Frequency Range;283
8.1.7;7.7 Powerful Magneto-FET in a Frequency Band Below 30GHz;290
8.1.8;7.8 Powerful Magneto-FET in EHF Range;293
8.2;8 Calculation of Thermal Conditions of Magnetotransistors in Continuous and Pulse Modes;296
8.2.1;8.1 General Remarks;296
8.2.2;8.2 Nonstationary and Temperature Field of Powerful Magneto-FET in Pulse Mode;298
8.2.3;8.3 Stationary Thermal Resistance of Powerful Magneto-FET with Squared Shape;301
8.2.4;8.4 Stationary Thermal Resistance of Powerful Magneto-FET in the Form of Multilayer Cylinder;302
9;Part IV Applied Aspects;305
9.1;9 Influence of External Factors;306
9.1.1;9.1 General Remarks;306
9.1.2;9.2 Estimation of Static Load;308
9.1.3;9.3 Strength of Beam-Type Bonds;309
9.1.4;9.4 Strength of Glue Fixation;310
9.1.5;9.5 Strength of Screw Connection;311
9.1.6;9.6 Resistivity to Dynamic Forces;312
9.1.7;9.7 Resistivity to Pressure Changes;313
9.1.8;9.8 Resistivity to Temperature Excitations;314
9.1.9;9.9 Resistivity of HMS to External Factors;316
9.1.10;9.10 Estimation of Jam Protection;316
9.2;10 Multifunctional Generation and Boosting;324
9.2.1;10.1 Generation of Increased Continued and Pulse Power Levels in Omnirange, UHF Ranges;324
9.2.2;10.2 Signal Multiplication in Omnirange, UHF Range;326
9.2.3;10.3 Generation and Multiplication of Signals of Lowand High Power Levels in UHF and Microwave Frequency Ranges;327
9.2.4;10.4 Generation of Powerful Signals in the EHF Range;330
9.3;11 Multifunctional Frequency Synthesizers;334
9.3.1;11.1 General Data;334
9.3.2;11.2 Oscillators Operated by Magnetic Field in FrequencySynthesizers;339
9.3.3;11.3 Frequency Synthesizers of Indirect Synthesis Based on APLC;341
9.3.4;11.4 Oscillator Operated by Magnetic Field;343
9.3.4.1;11.4.1 Experimental MCG Research;346
9.3.5;11.5 Multifunctional Frequency Synthesizers Based on APLC Using GSM;348
9.3.6;11.6 Multifunctional Operated Frequency Synthesizer Based on Transistor BFR 90;349
9.3.7;11.7 Transient Processes Inside Synthesizers with APLC;352
9.3.8;11.8 Output Characteristics of GSM;353
9.3.9;11.9 Pseudorandom Working Frequency Tuning and Phase-Shift Keying of Pseudonoise SignalUsing GSM;361
9.3.9.1;11.9.1 GSM with PWFT Function;361
9.3.9.2;11.9.2 GSM with PSK PS Function;363
9.3.10;11.10 Discrete Phaser for PSK PS;364
9.3.11;11.11 Frequency Synthesizers on Generative Magnetotransistors;374
9.4;12 Vector Sensors and Magnetometers with Heteromagnetic Interaction;375
9.4.1;12.1 Investigations of Properties of Double-Coil Coupling Elements;375
9.4.2;12.2 Magnetosensitive Active Oscillator;378
9.4.3;12.3 Projection Element of Magnetosensitive Sensor;383
9.4.4;12.4 Magnetosensitive One-Coordinate Sensor;388
9.4.5;12.5 Measurement Procedures of Ferrite Microresonator Parameters;394
9.4.5.1;12.5.1 Determination of Equilibrium Orientation of Magnetization for Cubic Ferrite Monocrystals;394
9.4.5.2;12.5.2 Determination of Equilibrium Orientation of Magnetization of Spheric Specimen;396
9.4.6;12.6 Experimental Investigation of Parameters of a Vector Magnetoelectronic Sensor;400
9.4.7;12.7 Determination of Earth's Magnetic Field Vector by a Heteromagnetic Sensor;408
9.4.8;12.8 Algorithms and Circuit Engineering Solutions for Investigations of Frequency Signal Responses from a Heteromagnetic Sensor;411
9.5;13 Low-Noise Amplifiers on Magnetotransistors Below 40GHz;418
9.5.1;13.1 Power Level and Dynamic Range. Choice of a Linear Transistor Model for Calculation;418
9.5.2;13.2 Choice and Substantiation of Coupling Element for a Frequency Band Below 40GHz;420
9.5.3;13.3 Projection of Magnetoelectronic One-Stage Amplifier on Magnetotransistor;423
9.6;14 Magnetotransistors and Their Technologies;433
9.6.1;14.1 Magneto-FET of High Power Level in Intense and Generator Modes;433
9.6.2;14.2 Bipolar Magnetotransistors in Intense Mode on High Power Level in UHF Range;437
9.6.3;14.3 Experimental Investigation of Bipolar Magnetotransistors Based on KT9175A Crystals;444
9.6.4;14.4 Magneto-FET in EHF Range in Boost Regime;446
9.6.5;14.5 FET and Bipolar Magnetotransistor in Microwave Frequency Range of High Power Level;453
9.6.5.1;14.5.1 Magneto-FET of High Power Level;453
9.6.5.2;14.5.2 Bipolar Magnetotransistors of High Power Level;454
9.6.6;14.6 Ferrite Semiconductor Structures in Regime of Oscillation Conversion in a Frequency Band 100–1,000GHz;458
9.6.7;14.7 Manufacturing Methods;463
9.6.7.1;14.7.1 FET Parameters;463
9.6.7.2;14.7.2 Technological Peculiarities of Manufacturing of GaAs FET;465
9.6.8;14.8 Manufacturing Methods of an Integral Magnetosemiconductor Device;469
9.6.9;14.9 Multivariate Vector Sensors of Mechanical DynamicQuantities;474
9.6.10;14.10 Multivariate Vector Sensors of Electromagnetic and Mechanical Physical Quantities for New Generations of Metrical, Checking, and Tested Microsystems, Including Intellectual Ones;480
9.7;15 Nonlinear Effects in Magnetotransistors and Their Elements;488
9.7.1;15.1 Peculiarities of Nonlinear Processes in Ferromagnetics;488
9.7.2;15.2 Peculiarities of Ferromagnetic Resonancein Structures with First-order Nonlinearity;489
9.7.3;15.3 Experimental Observations of Nonlinear Ferromagnetic Resonance;490
9.7.4;15.4 Generation of Signals in Regime of Nonlinear Ferromagnetic Resonance;493
9.7.5;15.5 Saturation Mode of Principal Resonance;495
9.7.6;15.6 Power Limiting in FMCR;496
10;Conclusion;502
11;References;504
12;Index;508



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.