Buch, Englisch, 368 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 559 g
Principles and Techniques
Buch, Englisch, 368 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 559 g
ISBN: 978-1-032-08621-7
Verlag: CRC Press
This book provides a perspective on the application of machine learning-based methods in knowledge discovery from natural languages texts. By analysing various data sets, conclusions which are not normally evident, emerge and can be used for various purposes and applications. The book provides explanations of principles of time-proven machine learning algorithms applied in text mining together with step-by-step demonstrations of how to reveal the semantic contents in real-world datasets using the popular R-language with its implemented machine learning algorithms. The book is not only aimed at IT specialists, but is meant for a wider audience that needs to process big sets of text documents and has basic knowledge of the subject, e.g. e-mail service providers, online shoppers, librarians, etc.
The book starts with an introduction to text-based natural language data processing and its goals and problems. It focuses on machine learning, presenting various algorithms with their use and possibilities, and reviews the positives and negatives. Beginning with the initial data pre-processing, a reader can follow the steps provided in the R-language including the subsuming of various available plug-ins into the resulting software tool. A big advantage is that R also contains many libraries implementing machine learning algorithms, so a reader can concentrate on the principal target without the need to implement the details of the algorithms her- or himself. To make sense of the results, the book also provides explanations of the algorithms, which supports the final evaluation and interpretation of the results. The examples are demonstrated using realworld data from commonly accessible Internet sources.
Zielgruppe
Academic
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction to the Text Mining. Problematics. Textual Data in Natural Languages and Their Computer Representation. Typical Tasks and Problems. Basic Processing Tools. Machine Learning and Its Application. Applying Sequences of Machine Learning Algorithms. R-language and Its Use for Machine Learning-Based Text Mining. Real-World-Data Examples and Their Basic Preprocessing Using R. Advanced Text Mining Using Machine Learning and R. Selecting Appropriate Machine Learning Algorithms. Examples of Typical Task Solutions. Interpretation of Results.