E-Book, Englisch, Band 50, 536 Seiten
Irving / Soutis Polymer Composites in the Aerospace Industry
1. Auflage 2014
ISBN: 978-0-85709-918-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band 50, 536 Seiten
Reihe: Woodhead Publishing Series in Composites
ISBN: 978-0-85709-918-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Polymer composites are increasingly used in aerospace applications due to properties such as strength and durability compared to weight. Edited by two leading authorities in the field, this book summarises key recent research on design, manufacture and performance of composite components for aerospace structures. Part one reviews the design and manufacture of different types of composite component. Part two discusses aspects of performance such as stiffness, strength, fatigue, impact and blast behaviour, response to temperature and humidity as well as non-destructive testing and monitoring techniques.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Related titles;3
3;Polymer Composites in the Aerospace Industry;4
4;Copyright;5
5;Contents;6
6;List of contributors;12
7;Woodhead Publishing Series in Composites Science and Engineering;14
8;1 - Introduction: engineering requirements for aerospace composite materials;18
8.1;1.1 Introduction;18
8.2;1.2 Analysis and design;21
8.3;1.3 Manufacturing techniques;26
8.4;1.4 Applications in aircraft construction;28
8.5;1.5 Conclusion;33
8.6;References;34
9;Part One -
Design and manufacture of composite components for aerospace structures;36
9.1;2 - Modelling the structure and behaviour of 2D and 3D woven composites used in aerospace applications;38
9.1.1;2.1 Introduction;38
9.1.2;2.2 Architecture of a woven unit cell;40
9.1.3;2.3 Stiffness modelling: method of inclusions;49
9.1.4;2.4 Stress and strength modelling: finite element (FE) analysis;56
9.1.5;2.5 Conclusion;63
9.1.6;Acknowledgement;64
9.1.7;References;64
9.2;3 - Manufacturing processes for composite materials and components for aerospace applications;70
9.2.1;3.1 Introduction;70
9.2.2;3.2 Key property and process requirements;71
9.2.3;3.3 Prepreg/autoclave processes;73
9.2.4;3.4 Filament winding;76
9.2.5;3.5 Automated prepreg processes: automated fibre placement and automated tape layup;78
9.2.6;3.6 Resin-infusion processes;80
9.2.7;3.7 Process monitoring;89
9.2.8;3.8 Conclusions;90
9.2.9;References;90
9.3;4 - Buckling and compressive strength of laminates with optimized fibre-steering and layer-stacking for aerospace applications;94
9.3.1;4.1 Introduction;94
9.3.2;4.2 Elastic properties of laminates;95
9.3.3;4.3 Buckling analysis;99
9.3.4;4.4 Buckling optimization of straight fibre laminates;101
9.3.5;4.5 Variable angle fibres using continuous tow shearing;101
9.3.6;4.6 Compression after impact and damage tolerance;106
9.3.7;4.7 Conclusion;112
9.3.8;Acknowledgements;113
9.3.9;References;113
9.3.10;4. Appendix: glossary;114
9.4;5 - Manufacturing defects in composites and their effects on performance;116
9.4.1;5.1 Introduction;116
9.4.2;5.2 Defects in composite materials;116
9.4.3;5.3 Modelling with defects;122
9.4.4;5.4 Implications on cost-effective manufacturing;123
9.4.5;5.5 Mechanics-based analysis of defects;124
9.4.6;5.6 Summary;129
9.4.7;References;130
10;Part 2 Composite performance in aerospace structure design;132
10.1;6 - Modeling the stiffness and strength of aerospace structural elements;134
10.1.1;6.1 Introduction;134
10.1.2;6.2 Definition of structural elements;134
10.1.3;6.3 Modeling approaches;136
10.1.4;6.4 Woven composite materials;160
10.1.5;6.5 Modeling effect of anomalies;162
10.1.6;6.6 Future trends;164
10.1.7;6.7 Sources of further information and advice;166
10.1.8;References;167
10.1.9;6. Appendix: glossary;169
10.2;7 - Fatigue of fiber reinforced composites under multiaxial loading;172
10.2.1;7.1 Introduction;172
10.2.2;7.2 Fatigue behavior of continuous fiber composites under multiaxial loading;174
10.2.3;7.3 Fatigue behavior of continuous fiber reinforced composites under multiaxial loading;176
10.2.4;7.4 Multiaxial fatigue ratio;186
10.2.5;7.5 Fatigue life prediction criteria;187
10.2.6;7.6 Comments on life prediction criteria and damage mechanics;198
10.2.7;7.7 Conclusions;201
10.2.8;References;201
10.2.9;7. Appendix: symbols;206
10.3;8 - Fracture mechanics characterization of polymer composites for aerospace applications;208
10.3.1;8.1 Introduction;208
10.3.2;8.2 Applications of fracture mechanics of fibre-reinforced polymer-matrix (FRP) composites in aerospace;211
10.3.3;8.3 Fracture mechanics test methods for FRP composites;213
10.3.4;8.4 Fracture mechanics test data for selected FRP composites;218
10.3.5;8.5 Fracture mechanics testing of non-unidirectional FRP composites;225
10.3.6;8.6 Fracture mechanics testing under aerospace environmental conditions;231
10.3.7;8.7 Conclusions and future trends;235
10.3.8;Acknowledgements;237
10.3.9;References;238
10.3.10;8. Appendix: glossary;246
10.4;9 - Impact, post-impact strength and post-impact fatigue behaviour of polymer composites;248
10.4.1;9.1 Introduction;248
10.4.2;9.2 Nature of damage;249
10.4.3;9.3 Residual strength;252
10.4.4;9.4 Post-impact fatigue behaviour of polymer composite laminates;254
10.4.5;9.5 Prediction of impact damage extent, residual strength and post-impact fatigue;264
10.4.6;9.6 The damage-resistant structure: designing against impact and fatigue;269
10.4.7;9.7 Damage tolerance;270
10.4.8;9.8 Conclusions and future trends;272
10.4.9;References;273
10.5;10 - Design and testing of crashworthy aerospace composite components;278
10.5.1;10.1 Introduction;278
10.5.2;10.2 Crashworthy design concepts for aircraft structures;280
10.5.3;10.3 Design of composite structural elements under crash loads;286
10.5.4;10.4 Design and crash test of composite helicopter frame structure;295
10.5.5;10.5 Conclusions and future trends;304
10.5.6;Acknowledgements;306
10.5.7;References;307
10.6;11 - Design and failure analysis of composite bolted joints for aerospace composites;312
10.6.1;11.1 Introduction;312
10.6.2;11.2 Finite element model;318
10.6.3;11.3 Analysis of single-bolt joints;319
10.6.4;11.4 Analysis of multi-bolt joints;330
10.6.5;11.5 Failure analysis of joints;336
10.6.6;11.6 Future trends;345
10.6.7;11.7 Conclusions;347
10.6.8;11.8 Further sources of information;347
10.6.9;References;348
10.7;12 - The response of aerospace composites to temperature and humidity;352
10.7.1;12.1 Introduction;352
10.7.2;12.2 Moisture absorption;353
10.7.3;12.3 Moisture sensitivity of matrix resins;358
10.7.4;12.4 Mechanism of moisture retention in aerospace epoxies;361
10.7.5;12.5 Anomalous effects;366
10.7.6;12.6 Thermal spiking;367
10.7.7;12.7 Thermo-mechanical response of resins;368
10.7.8;12.8 Effect of moisture on composite performance;370
10.7.9;12.9 Fibre-dominated properties;375
10.7.10;12.10 Nonaqueous environments;379
10.7.11;12.11 Composite unidirectional properties;380
10.7.12;12.12 Conclusions;384
10.7.13;References;385
10.8;13 - The blast response of composite and fibre-metal laminate materials used in aerospace applications;388
10.8.1;13.1 Introduction;388
10.8.2;13.2 Characteristics of explosions in air;389
10.8.3;13.3 Paradigms of blast protection;391
10.8.4;13.4 Explosion loading of fuselage structures;392
10.8.5;13.5 The blast performance of plain composites;392
10.8.6;13.6 The blast performance of multilayered systems;399
10.8.7;13.7 Conclusions;405
10.8.8;References;405
10.9;14 - Repair of damaged aerospace composite structures;410
10.9.1;14.1 Introduction;410
10.9.2;14.2 Assessment of repair and non-destructive tests;412
10.9.3;14.3 Repair;415
10.9.4;14.4 Typical repair procedure;418
10.9.5;14.5 Analysis of repair;422
10.9.6;14.6 Conclusion and future trends;427
10.9.7;References;428
10.10;15 - Nondestructive testing of damage in aerospace composites;430
10.10.1;15.1 Introduction;430
10.10.2;15.2 Types of composite damage;430
10.10.3;15.3 Damage in sandwich composites and in adhesive joints;438
10.10.4;15.4 NDT, NDI, and NDE methods for polymer composite structures;440
10.10.5;15.5 Probability of detection;445
10.10.6;15.6 Visual and tap testing;446
10.10.7;15.7 Ultrasonic testing;446
10.10.8;15.8 Thermography;453
10.10.9;15.9 Shearography;456
10.10.10;15.10 Radiography;457
10.10.11;15.11 Electromagnetic methods;460
10.10.12;15.12 Bond inspection;461
10.10.13;15.13 Summary and conclusions;462
10.10.14;References;462
10.11;16 - Structural health monitoring (SHM) of aerospace composites;466
10.11.1;16.1 Introduction;466
10.11.2;16.2 Conventional resistance strain gauges;466
10.11.3;16.3 Fiber optics sensors;467
10.11.4;16.4 Fiber Bragg grating (FBG) sensors;470
10.11.5;16.5 Piezoelectric wafer active sensors (PWAS);473
10.11.6;16.6 Electrical properties sensors;478
10.11.7;16.7 SHM systems;479
10.11.8;16.8 Local-area active sensing with electromechanical impedance spectroscopy;506
10.11.9;16.9 Active sensing SHM: electrical methods;508
10.11.10;16.10 Direct methods for impact damage detection;516
10.11.11;16.11 Conclusions;518
10.11.12;References;518
11;Index;526
Modelling the structure and behaviour of 2D and 3D woven composites used in aerospace applications
Abstract
The chapter starts from description of geometrical models of 2D and 3D woven fabrics, with an aim of creation of meso-level (textile unit cell) finite element (FE) models, and proceeds to micromechanics of woven composites, based on the method of inclusions/Mori-Tanaka homogenisation and FE analysis of the stress–strain state of the unit cell. Special attention is paid to geometrical consistency of the FE models. CDM-type damage model is presented and an example of FE modelling of a woven composite is given.
Keywords
Damage; Homogenisation; Internal geometry; Models; Woven composites
2.1. Introduction
Figure 2.1 Integration of textile composite models.




