E-Book, Englisch, 293 Seiten, eBook
Isidori Nonlinear Control Systems II
Erscheinungsjahr 2012
ISBN: 978-1-4471-0549-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 293 Seiten, eBook
Reihe: Communications and Control Engineering
ISBN: 978-1-4471-0549-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
The purpose of this book is to present a self-contained and coordinated de scription of several design methods for nonlinear control systems, with special emphasis on the problem of achieving stability, globally or on arbitrarily large domains, in the presence of model uncertainties. The book is intended to be a continuation of my earlier book Nonlinear Control Systems, dealing with the fundamentals of the theory of nonlinear control systems, whose third edition was published in 1995. In this respect, it is written in the form of a "second volume" of a single work, and uses a numbering system that continues the one adopted in the earlier book, with which the overlap is essentially insignificant. The book is intended as a graduate text as well as a reference to scientists and engineers interested in the design of feedback laws for nonlinear control systems. In the last decade, methods for global stabilization of nonlinear systems have experienced a vigorous growth.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
10. Stability of Interconnected Nonlinear Systems.- 10.1 Preliminaries.- 10.2 Asymptotic Stability and Small Perturbations.- 10.3 Asymptotic Stability of Cascade-Connected Systems.- 10.4 Input-to-State Stability.- 10.5 Input-to-State Stability of Cascade-Connected Systems.- 10.6 The “Small-Gain” Theorem for Input-to-State Stable Systems.- 10.7 Dissipative Systems.- 10.8 Stability of Interconnected Dissipative Systems.- 10.9 Dissipative Linear Systems.- 11. Feedback Design for Robust Global Stability.- 11.1 Preliminaries.- 11.2 Stabilization via Partial State Feedback: a Special Case.- 11.3 Stabilization via Output Feedback: a Special Case.- 11.4 Stabilization of Systems in Lower Triangular Form.- 11.5 Design for Multi-Input Systems.- 12. Feedback Design for Robust Semiglobal Stability.- 12.1 Achieving Semiglobal and Practical Stability.- 12.2 Semiglobal Stabilization via Partial State Feedback.- 12.3 A Proof of Theorem 9.6.2.- 12.4 Stabilization of Minimum-Phase Systems in Lower-Triangular Form.- 12.5 Stabilization via Output Feedback Without a Separation Principle.- 12.6 Stabilization via Output Feedback of Non-Minimum-Phase Systems.- 12.7 Examples.- 13. Disturbance Attenuation.- 13.1 Robust Stability via Disturbance Attenuation.- 13.2 The Case of Linear Systems.- 13.3 Disturbance Attenuation.- 13.4 Almost Disturbance Decoupling.- 13.5 An Estimate of the Minimal Level of Disturbance Attenuation.- 13.6L2-gain Design for Linear Systems.- 13.7 GlobalL2-gain Design for a Class of Nonlinear Systems.- 14. Stabilization Using Small Inputs.- 14.1 Achieving Global Stability via Small Inputs.- 14.2 Stabilization of Systems in Upper Triangular Form.- 14.3 Stabilization Using Saturation Functions.- 14.4 Applications and Extensions.- Bibliographical Notes.- References.