Buch, Englisch, 426 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 948 g
A Classroom Approach
Buch, Englisch, 426 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 948 g
ISBN: 978-1-77188-834-9
Verlag: Apple Academic Press Inc.
The authors provide an understanding of big data and MapReduce by clearly presenting the basic terminologies and concepts. They have employed over 100 illustrations and many worked-out examples to convey the concepts and methods used in big data, the inner workings of MapReduce, and single node/multi-node installation on physical/virtual machines. This book covers almost all the necessary information on Hadoop MapReduce for most online certification exams. Upon completing this book, readers will find it easy to understand other big data processing tools such as Spark, Storm, etc.
Ultimately, readers will be able to:
• understand what big data is and the factors that are involved
• understand the inner workings of MapReduce, which is essential for certification exams
• learn the features and weaknesses of MapReduce
• set up Hadoop clusters with 100s of physical/virtual machines
• create a virtual machine in AWS
• write MapReduce with Eclipse in a simple way
• understand other big data processing tools and their applications
Zielgruppe
Academic and Postgraduate
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein EDV: Zertifizierung
- Mathematik | Informatik EDV | Informatik Informatik
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
Weitere Infos & Material
Preface. 1. Introduction to Big Data. 2. Hadoop Framework. 3. Hadoop 1.2.1 Installation. 4. Hadoop Ecosystem. 5. Hadoop 2.7.0. 6. Hadoop. 2.7.0 Installation. 7. Data Science. 8. MapReduce Exercise. 9. Case Study: Application Development for NYSE Dataset.