Buch, Englisch, 748 Seiten, HC gerader Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1308 g
Concepts, Molecular Mechanisms, and Biomedical Applications
Buch, Englisch, 748 Seiten, HC gerader Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1308 g
ISBN: 978-1-4614-2151-1
Verlag: Springer
The book presents the first comprehensive molecular theory of the living cell ever published since the cell doctrine was formulated in 1838-1839. It introduces into cell biology over thirty key concepts, principles and laws imported from physics, chemistry, computer science, linguistics, semiotics and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for basic living processes such as ligand-receptor interactions, enzymic catalysis, force-generating mechanisms in molecular motors, chromatin remodelling, and signal transduction. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotherapeutics and personalized medicine.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Angewandte Physik Biophysik
- Naturwissenschaften Biowissenschaften Zellbiologie
- Naturwissenschaften Chemie Organische Chemie
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biophysik
- Naturwissenschaften Biowissenschaften Molekularbiologie
- Naturwissenschaften Biowissenschaften Enzymologie
- Naturwissenschaften Biowissenschaften Proteinforschung
Weitere Infos & Material
Preface.- 1. Introduction.- Part I. Principles, Laws, and Concepts.- 2. Physics.- 2.1. Thermodynamics of Living Systems.- 2.2. The Franck-Condon Principle (FCP).- 2.3. Complementarity.- 2.4. Renormalizable Bionetworks and SOWAWN Machines.- 2.5. The Theory of Finite Classes.- 2.6. Synchronic vs. Diachronic Causes.- 3. Chemistry.- 3.1. Principle of Self-Organization and Dissipative Structures.- 3.2. Conformations vs. Configurations: Noncovalent vs. Covalent Interactions (or Bonds).- 3.3.The Principle of Microscopic Reversibility.- 4. Biology.- 4.1. The Simpson Thesis.- 4.2. Molecular Machines, Motors, and Rotors.- 4.3. What Is Information?.- 4.4. The Chemistry and Thermodynamics of Information.- 4.5. Synchronic vs. Diachronic Information.- 4.6. Quantum Information and Enzymic Catalysis.- 4.7. The Information-Entropy Relation.- 4.8. The Minimum Energy Requirement for Information Transmission.- 4.9. Info-Statistical Mechanics and the Gnergy Space.- 4.10. Free Energy-Information Orthogonality as the ‘Bohr-Delbruck Paradox’.- 4.11. What Is Gnergy?.- 4.12. Two Categories of Information in Quantum Mechanics.- 4.13. The Information-Energy Complementarity as the Principle of Organization.- 4.14. Quantization as a Prelude to Organization.- 4.15. Simple Enzymes are to Enzyme Complexes What Atoms are to Quantum Dots.- 4.16. “It from Bit” and the Triadic Theory of Reality.- 5. Engineering.- 5.1. Microelectronics.- 5.2. Computer Science.- 5.3. Cybernetics.- 6. Linguistics, Semiotics, and Philosophy.- 6.1. Linguistics.- 6.2. Semiotics.- 6.3.Philosophy.- Part II. Theories, Molecular Mechanisms, and Models.- 7. Molecular Mechanisms of Enzymic Catalysis.- 7.1. Molecular Mechanisms of Ligand-Protein Interactions.- 7.2. Enzymic Catalysis.- 8. The Conformon.- 8.1. The Definition and Historical Background.- 8.2. Generalized Franck-Condon Principle-Based Mechanism of Conformon Generation.- 8.3. Experimental Evidence for Conformons.- 8.4. Conformons as Force Generators of Molecular Machines.- 8.5. A Bionetwork Representation of the Mechanism of the Ca++ Ion Pump.- 8.6. Ion Pumps as Coincidence Detectors.- 8.7. The Conformon Hypothesis of Energy-Coupled Processes in the Cell.- 8.8. The von Neumann Questions and the Conformon Theory.- 9. Intracellular Dissipative Structures (IDSs).- 9.1. Experimental Evidence for IDSs (Dssipatons).- 9.2. The p53 Network as an 8-Dimensional Hypernetwork.- 9.3. Interactome, Bionetworks, and IDSs.- 10. The Living Cell.- 10.1.The Bhopalator: a Molecular Model of the Living Cell.- 10.2. The IDS-Cell Function Identity Hypothesis.- 10.3. The Triadic Structure of the Living Cell.- 10.4. A Topological Model of the Cell.- 10.5. The Atom-Cell Isomorphism Postulate.- 10.6. A Historical Analogy between Atomic Physics and Cell Biology.- 10.7. Evolving Models of the Living Cells.- Part III. Applications: From Molecules to Mind and Evolution.- 11.Subcellular Systems.- 11.1. Protein Folding and ‘Infostatistical Mechanics’.- 11.2. What is a Gene?.- 11.3. Single-Molecule Enzymology.- 11.4. Conformon Model of Molecular Machines.- 11.5. The Conformon Theory of Oxidative Phosphorylation.- 11.6. Deconstructing the Chemiosmotic Hypothesis.- 12.Whole Cells.- 12.1. DNA Arrays: A Revolution in Cell Biology.- 12.2. DNA Array Technique.- 12.3. Simultaneous Measurements of Transcript Levels (TL) and Transcription Rates (TR).- 12.4. RNA Trajectories as Intracellular Dissipative Structures (IDSs).- 12.5. The IDS-Cell Function Identity Hypothesis: Experimental Evidence.- 12.6. The Transcription-Transcript Conflation.- 12.7. Mechanistic Modules of RNA Metabolism.- 12.8. Visualizing RNA Dissipatons.- 12.9. Structural Genes as Regulators of their own Transcripts.- 12.10. Rule-Governed Creativity in Transcriptomics: Microarray Evidence.- 12.11. Genes are Molecular Machines: Microarray Evidence.- 12.12. Isomorphism between Blackbody Radiation and Whole-Cell Metabolism: The Universal Law of Thermal Excitations (ULTE).- 12.13. The Quantization of the Gibbs Fr