Ji | Molecular Theory of the Living Cell | Buch | 978-1-4614-2151-1 | sack.de

Buch, Englisch, 748 Seiten, HC gerader Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1308 g

Ji

Molecular Theory of the Living Cell

Concepts, Molecular Mechanisms, and Biomedical Applications
2012
ISBN: 978-1-4614-2151-1
Verlag: Springer

Concepts, Molecular Mechanisms, and Biomedical Applications

Buch, Englisch, 748 Seiten, HC gerader Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1308 g

ISBN: 978-1-4614-2151-1
Verlag: Springer


The book presents the first comprehensive molecular theory of the living cell ever published since the cell doctrine was formulated in 1838-1839. It introduces into cell biology over thirty key concepts, principles and laws imported from physics, chemistry, computer science, linguistics, semiotics and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for basic living processes such as ligand-receptor interactions, enzymic catalysis, force-generating mechanisms in molecular motors, chromatin remodelling, and signal transduction. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotherapeutics and personalized medicine.

Ji Molecular Theory of the Living Cell jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Preface.- 1. Introduction.- Part I. Principles, Laws, and Concepts.- 2. Physics.- 2.1. Thermodynamics of Living Systems.- 2.2. The Franck-Condon Principle (FCP).- 2.3. Complementarity.- 2.4. Renormalizable Bionetworks and SOWAWN Machines.- 2.5. The Theory of Finite Classes.- 2.6. Synchronic vs. Diachronic Causes.- 3. Chemistry.- 3.1. Principle of Self-Organization and Dissipative Structures.- 3.2. Conformations vs. Configurations: Noncovalent vs. Covalent Interactions (or Bonds).- 3.3.The Principle of Microscopic Reversibility.- 4. Biology.- 4.1. The Simpson Thesis.- 4.2. Molecular Machines, Motors, and Rotors.- 4.3. What Is Information?.- 4.4. The Chemistry and Thermodynamics of Information.- 4.5. Synchronic vs. Diachronic Information.- 4.6. Quantum Information and Enzymic Catalysis.- 4.7. The Information-Entropy Relation.- 4.8. The Minimum Energy Requirement for Information Transmission.- 4.9. Info-Statistical Mechanics and the Gnergy Space.- 4.10. Free Energy-Information Orthogonality as the ‘Bohr-Delbruck Paradox’.- 4.11. What Is Gnergy?.- 4.12. Two Categories of Information in Quantum Mechanics.- 4.13. The Information-Energy Complementarity as the Principle of Organization.- 4.14. Quantization as a Prelude to Organization.- 4.15. Simple Enzymes are to Enzyme Complexes What Atoms are to Quantum Dots.- 4.16. “It from Bit” and the Triadic Theory of Reality.- 5. Engineering.- 5.1. Microelectronics.- 5.2. Computer Science.- 5.3. Cybernetics.- 6. Linguistics, Semiotics, and Philosophy.- 6.1. Linguistics.- 6.2. Semiotics.- 6.3.Philosophy.- Part II. Theories, Molecular Mechanisms, and Models.- 7. Molecular Mechanisms of Enzymic Catalysis.- 7.1. Molecular Mechanisms of Ligand-Protein Interactions.- 7.2. Enzymic Catalysis.- 8. The Conformon.- 8.1. The Definition and Historical Background.- 8.2. Generalized Franck-Condon Principle-Based Mechanism of Conformon Generation.- 8.3. Experimental Evidence for Conformons.- 8.4. Conformons as Force Generators of Molecular Machines.- 8.5. A Bionetwork Representation of the Mechanism of the Ca++ Ion Pump.- 8.6. Ion Pumps as Coincidence Detectors.- 8.7. The Conformon Hypothesis of Energy-Coupled Processes in the Cell.- 8.8. The von Neumann Questions and the Conformon Theory.- 9. Intracellular Dissipative Structures (IDSs).- 9.1. Experimental Evidence for IDSs (Dssipatons).- 9.2. The p53 Network as an 8-Dimensional Hypernetwork.- 9.3. Interactome, Bionetworks, and IDSs.- 10. The Living Cell.- 10.1.The Bhopalator: a Molecular Model of the Living Cell.- 10.2. The IDS-Cell Function Identity Hypothesis.- 10.3. The Triadic Structure of the Living Cell.- 10.4. A Topological Model of the Cell.- 10.5. The Atom-Cell Isomorphism Postulate.- 10.6. A Historical Analogy between Atomic Physics and Cell Biology.- 10.7. Evolving Models of the Living Cells.- Part III. Applications: From Molecules to Mind and Evolution.- 11.Subcellular Systems.- 11.1. Protein Folding and ‘Infostatistical Mechanics’.- 11.2. What is a Gene?.- 11.3. Single-Molecule Enzymology.- 11.4. Conformon Model of Molecular Machines.- 11.5. The Conformon Theory of Oxidative Phosphorylation.- 11.6. Deconstructing the Chemiosmotic Hypothesis.- 12.Whole Cells.- 12.1. DNA Arrays: A Revolution in Cell Biology.- 12.2. DNA Array Technique.- 12.3. Simultaneous Measurements of Transcript Levels (TL) and Transcription Rates (TR).- 12.4. RNA Trajectories as Intracellular Dissipative Structures (IDSs).- 12.5. The IDS-Cell Function Identity Hypothesis: Experimental Evidence.- 12.6. The Transcription-Transcript Conflation.- 12.7. Mechanistic Modules of RNA Metabolism.- 12.8. Visualizing RNA Dissipatons.- 12.9. Structural Genes as Regulators of their own Transcripts.- 12.10. Rule-Governed Creativity in Transcriptomics: Microarray Evidence.- 12.11. Genes are Molecular Machines: Microarray Evidence.- 12.12. Isomorphism between Blackbody Radiation and Whole-Cell Metabolism: The Universal Law of Thermal Excitations (ULTE).- 12.13. The Quantization of the Gibbs Fr


After two years of pre-engineering training at the College of Engineering, Seoul National University in Seoul, Korea, the author obtained a scholarship in 1962 to study at the University of Minnesota, Duluth, receiving a Bachelor’s degree in chemistry and mathematics in 1965. The author received a Ph.D. degree in physical organic chemistry from the State University of New York at Albany in 1970. Between 1970 and 74, he was a postdoctoral fellow and a Research Assistant Professor at the Institute for Enzyme Research at the University of Wisconsin, Madison, studying the molecular mechanisms of oxidative phosphorylation in mitochondria. The concept of the conformon that plays a key role in the theory of the living cell described in the book was first formulated while the author was carrying out bio-theoretical research in Madison. He then spent 2 years at the Johnson Research Foundation at the University of Pennsylvania investigating the space-dependent NADH fluorescence signals from rat liver and brains as a function of metabolic and circulatory perturbations. Based on the results of these experiments, the author was invited to join a research group at the Max Planck Institute for Systems Physiology, Dortmund, West Germany, as a visiting scientist, between 1976 and 1979, returning to the US in 1979 as a Research Associate Professor at the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC. The author spent 3 years in Chapel Hill, elucidating the mechanisms of alcohol-induced liver injury using rat models. Since 1982, the author has been teaching and carrying out theoretical and experimental research in the Department of Pharmacology and Toxicology at Rutgers University, Piscataway, NJ, where the author formulated the Bhopalator model of the cell in 1983 and has been developing and applying it to pharmacology and toxicology ever since.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.