Johnson | Combinatorics of Spreads and Parallelisms | Buch | 978-1-4398-1946-3 | sack.de

Buch, Englisch, 674 Seiten, Format (B × H): 155 mm x 231 mm, Gewicht: 1066 g

Reihe: Chapman & Hall Pure and Applied Mathematics

Johnson

Combinatorics of Spreads and Parallelisms


1. Auflage 2010
ISBN: 978-1-4398-1946-3
Verlag: CRC Press

Buch, Englisch, 674 Seiten, Format (B × H): 155 mm x 231 mm, Gewicht: 1066 g

Reihe: Chapman & Hall Pure and Applied Mathematics

ISBN: 978-1-4398-1946-3
Verlag: CRC Press


Combinatorics of Spreads and Parallelisms covers all known finite and infinite parallelisms as well as the planes comprising them. It also presents a complete analysis of general spreads and partitions of vector spaces that provide groups enabling the construction of subgeometry partitions of projective spaces.

The book describes general partitions of finite and infinite vector spaces, including Sperner spaces, focal-spreads, and their associated geometries. Since retraction groups provide quasi-subgeometry and subgeometry partitions of projective spaces, the author thoroughly discusses subgeometry partitions and their construction methods. He also features focal-spreads as partitions of vector spaces by subspaces. In addition to presenting many new examples of finite and infinite parallelisms, the book shows that doubly transitive or transitive t-parallelisms cannot exist unless the parallelism is a line parallelism.

Along with the author’s other three books (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes), this text forms a solid, comprehensive account of the complete theory of the geometries that are connected with translation planes in intricate ways. It explores how to construct interesting parallelisms and how general spreads of vector spaces are used to study and construct subgeometry partitions of projective spaces.

Johnson Combinatorics of Spreads and Parallelisms jetzt bestellen!

Zielgruppe


Academic


Autoren/Hrsg.


Weitere Infos & Material


Partitions of Vector Spaces. Subgeometry Partitions. Subplane Covered Nets and Baer Groups. Flocks and Related Geometries. Derivable Geometries. Constructions of Parallelisms. Parallelism-Inducing Groups. Coset Switching. Transitivity. Appendices. Bibliography. Index.


Norman L. Johnson is a professor in the Department of Mathematics at the University of Iowa.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.