Buch, Englisch, 594 Seiten, Format (B × H): 151 mm x 229 mm, Gewicht: 930 g
Behavior and Ecological Effects
Buch, Englisch, 594 Seiten, Format (B × H): 151 mm x 229 mm, Gewicht: 930 g
ISBN: 978-0-12-386660-8
Verlag: William Andrew Publishing
Zielgruppe
Professional entomologists, horticulturists, farm managers, crop consultants, and scientists in related fields of agriculture. Lecturers, graduate students, and researchers in the plant sciences.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften Meeres- und Süßwasserökologie
- Geowissenschaften Geographie | Raumplanung Wälder
- Naturwissenschaften Biowissenschaften Biowissenschaften Ökologie
- Geowissenschaften Umweltwissenschaften Naturgewalten & Katastrophen
- Naturwissenschaften Biowissenschaften Biowissenschaften Terrestrische Ökologie
- Naturwissenschaften Biowissenschaften Biowissenschaften Naturschutzbiologie, Biodiversität
Weitere Infos & Material
Contributors
Preface
Acknowledgments
1 Strengthening Fire Ecology's Roots
I. Introduction
II. Processes
III. Transfer Rates and Budgets
IV. Examples of Traditional vs. Proposed Approach
References
2 Flames
I. Introduction
II. Basic Aspects of Combustion in Forest Fires
III. Temperature, Velocity, Species Concentration, and Flame Height
IV Premixed and Diffusion Flames
V. Extinction of Diffusion Flames
VI. Diffusion Flames and Scaling Analysis
VII. Spreading Flames
VIII. Structure of Flame Base
IX. Conclusions
Notation
References
3 Combustion Chemistry and Smoke
I. Introduction
II. Fuel Chemistry and Combustion
III. Smoke Production
IV. Minimizing Smoke Production
V. Conclusions
References
4 Water Relations of Forest Fuels
I. Introduction
II. Forest Fuels
III. Fuel Moisture Relationships
IV. Moisture Content Estimation
Notation
Additional Reading
References
5 Wildland Fire Spread Models
I. Introduction
II. Head Fire Rate of Spread (Physical Principles and their Mathematical Embodiment)
III. Head Fire Rate of Spread: Australia
IV. Head Fire Rate of Spread: United States
V. Head Fire Rate of Spread: Canada
VI. Smoldering
VII. Whole Fire Modeling-Fire Shape
Notation
References
6 Wind-Aided Fire Spread
I. Introduction
II. Laboratory-Scale Setup
III. Fire Spread Model
IV. Preliminary Testing of the Model
V. Test Results for the Effect of Wind Speed and Fuel Loading on the Rate of Fire Spread
VI. Conclusions
Notation
Recommended Reading
References
7 Fire Plumes
I. Introduction
II. Modeling Fire Temperature Maxima
III. Plumes above Fires in a Cross Wind
Notation
References
8 Coupling Atmospheric and Fire Models
I. Introduction
II. Vorticity Dynamics in a Fire
III. Coupling between Atmosphere and Fire
IV. The Elements of Fire Modeling
V. Modeling the Atmosphere
VI. The Coupled Fire-Atmosphere Modeling Approach
VII. Idealized Studies of Wildfire Behavior
VIII. Infrared Observations of Fires
IX. Conclusions and Future Work
Appendix I. Circulation and Vorticity
Appendix II. Development of Vertical Rotation in a Frictionless Fluid
Appendix III. Generation of Vertical Motion in Rotating Convective Cells
Notation
References
9 Surface Energy Budget and Fuel Moisture
I. Introduction
II. Evapotranspiration Processes and the Meteorological Controlling Factors
III. Estimation of Potential Evapotranspiration Rates
IV. Functional Dependence of PET and AET
V. Characteristics of PET
VI. Near-Surface Environment
VII. Models of Land-Surface Interactions
VIII. Remote Sensing of the Surface Energy Budget
IX. Fire Weather Rating Systems
Notation
Suggested Reading List
References
10 Climate, Weather, and Area Burned
I. Introduction
II. Weather and Area Burned-Synoptic Surface Features
III. Weather and Area Burned-Upper Air Features
IV. Teleconnections
V. Future Warming and Area Burned
VI. Summary
References
11 Lightning and Forest Fires
I. Introduction
II. Lightning
III. Previous Studies of Lightning-Initiated Fire
IV. Interaction between Lightning and Fuels
V. How Ignition Occurs
VI. Ignition Experiments with Real Forest Fuels
VII. Generating Models for Operational Use
VIII. Smoke, Lightning, and Cloud Microphysics
IX. Global Implications of Lightning Ignition Characteristics
X. Conclusion
References
12 Statistical Inference for Historical Fire Frequency Using the Spatial Mosaic
I. Introduction
II. Graphical Analysis
III. Statistical Inference with Prespecified Change Points
IV. The Efficiency of Sample vs. Map Data
V. Determining Epochs of Constant Fire Frequency
References
13 Duff Consumption
I. Introduction
II. Characteristics of Duff
III. Empirical Studies of Duff Consumption
IV. Flaming Combustion
V. Smoldering Combustion and Pyrolysis
VI. Models of Smoldering Combustion
VII. Contribution of Smoldering Combustion Models to Understanding of Duff Consumption
Notation
References
14 Fire Effects on Trees
I. Introduction
II. Effects of Fire on the Tree Bole
III. Effects of Fire on Canopy Components
IV. Root Necrosis
V. Tree Mortality
VI. Discussion
Notation
Additional Readings
References
15 Forest Fire Management
I. Introduction
II. The Relationship between Fire and Forest Land Management Objectives
III. Assessing Fire Impacts
IV. Forest Fire Management Organizations
V. Level of Fire Protection Planning
VI. Some Challenges
Further Reading
References
Index