Jones | The Regularized Fast Hartley Transform | Buch | 978-94-007-3178-3 | sack.de

Buch, Englisch, 200 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g

Reihe: Signals and Communication Technology

Jones

The Regularized Fast Hartley Transform

Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments
2010
ISBN: 978-94-007-3178-3
Verlag: Springer Netherlands

Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments

Buch, Englisch, 200 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g

Reihe: Signals and Communication Technology

ISBN: 978-94-007-3178-3
Verlag: Springer Netherlands


Most real-world spectrum analysis problems involve the computation of the real-data discrete Fourier transform (DFT), a unitary transform that maps elements N of the linear space of real-valued N-tuples, R, to elements of its complex-valued N counterpart, C, and when carried out in hardware it is conventionally achieved via a real-from-complex strategy using a complex-data version of the fast Fourier transform (FFT), the generic name given to the class of fast algorithms used for the ef?cient computation of the DFT. Such algorithms are typically derived by explo- ing the property of symmetry, whether it exists just in the transform kernel or, in certain circumstances, in the input data and/or output data as well. In order to make effective use of a complex-data FFT, however, via the chosen real-from-complex N strategy, the input data to the DFT must ?rst be converted from elements of R to N elements of C. The reason for choosing the computational domain of real-data problems such N N as this to be C, rather than R, is due in part to the fact that computing equ- ment manufacturers have invested so heavily in producing digital signal processing (DSP) devices built around the design of the complex-data fast multiplier and accumulator (MAC), an arithmetic unit ideally suited to the implementation of the complex-data radix-2 butter?y, the computational unit used by the familiar class of recursive radix-2 FFT algorithms.

Jones The Regularized Fast Hartley Transform jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Background to Research.- Fast Solutions to Real-Data Discrete Fourier Transform.- The Discrete Hartley Transform.- Derivation of the Regularized Fast Hartley Transform.- Algorithm Design for Hardware-Based Computing Technologies.- Derivation of Area-Efficient and Scalable Parallel Architecture.- Design of Arithmetic Unit for Resource-Constrained Solution.- Computation of 2n-Point Real-Data Discrete Fourier Transform.- Applications of Regularized Fast Hartley Transform.- Summary and Conclusions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.