Jordan / Huggett | A Topological Aperitif | Buch | 978-1-84800-912-7 | sack.de

Buch, Englisch, 152 Seiten, Paperback, Format (B × H): 178 mm x 235 mm, Gewicht: 298 g

Jordan / Huggett

A Topological Aperitif


2. Auflage 2009
ISBN: 978-1-84800-912-7
Verlag: Springer

Buch, Englisch, 152 Seiten, Paperback, Format (B × H): 178 mm x 235 mm, Gewicht: 298 g

ISBN: 978-1-84800-912-7
Verlag: Springer


Topologyhasbeenreferredtoas“rubber-sheetgeometry”.Thenameisapt,for the subject is concerned with properties of an object that would be preserved, no matter how much it is stretched, squashed, or distorted, so long as it is not in any way torn apart or glued together. One’s ?rst reaction might be that such animprecise-soundingsubjectcouldhardlybepartofseriousmathematics,and wouldbeunlikelytohaveapplicationsbeyondtheamusementofsimpleparlour games. This reaction could hardly be further from the truth. Topology is one of the most important and broad-ranging disciplines of modern mathematics. It is a subject of great precision and of breadth of development. It has vastly many applications, some of great importance, ranging from particle physics to cosmology, and from hydrodynamics to algebra and number theory. It is also a subject of great beauty and depth. To appreciate something of this, it is not necessary to delve into the more obscure aspects of mathematical formalism. For topology is, at least initially, a very visual subject. Some of its concepts apply to spaces of large numbers of dimensions, and therefore do not easily submit to reasoning that depends upon direct pictorial representation. But even in such cases, important insights can be obtained from the visual - rusal of a simple geometrical con?guration. Although much modern topology depends upon ?nely tuned abstract algebraic machinery of great mathematical sophistication, the underlying ideas are often very simple and can be appre- ated by the examination of properties of elementary-looking drawings.

Jordan / Huggett A Topological Aperitif jetzt bestellen!

Zielgruppe


Undergraduate students; Lecturers; School teachers

Weitere Infos & Material


Foreword (written by Roger Penrose).- Homeomorphic Sets.- Topological Properties.- Equivalent Subsets.- Surfaces and Spaces.- Polyhedra.- Winding Number.- Appendix A: Continuity.- Appendix B: Knots.- Appendix C: History.- Appendix D: Solutions.- Bibliography.- Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.