Jungnickel / Niederreiter | Finite Fields and Applications | Buch | 978-3-540-41109-3 | sack.de

Buch, Englisch, 490 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 913 g

Jungnickel / Niederreiter

Finite Fields and Applications

Proceedings of The Fifth International Conference on Finite Fields and Applications Fq 5, held at the University of Augsburg, Germany, August 2–6, 1999
1. Auflage 2001
ISBN: 978-3-540-41109-3
Verlag: Springer

Proceedings of The Fifth International Conference on Finite Fields and Applications Fq 5, held at the University of Augsburg, Germany, August 2–6, 1999

Buch, Englisch, 490 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 913 g

ISBN: 978-3-540-41109-3
Verlag: Springer


This volume represents the refereed proceedings of the Fifth International Conference on Finite Fields and Applications (F q5) held at the University of Augsburg (Germany) from August 2-6, 1999, and hosted by the Department of Mathematics. The conference continued a series of biennial international conferences on finite fields, following earlier conferences at the University of Nevada at Las Vegas (USA) in August 1991 and August 1993, the University ofGlasgow (Scotland) in July 1995, and the University ofWaterloo (Canada) in August 1997. The Organizing Committee of F q5 comprised Thomas Beth (University ofKarlsruhe), Stephen D. Cohen (University of Glasgow), Dieter Jungnickel (University of Augsburg, Chairman), Alfred Menezes (University of Waterloo), Gary L. Mullen (Pennsylvania State University), Ronald C. Mullin (University of Waterloo), Harald Niederreiter (Austrian Academy of Sciences), and Alexander Pott (University of Magdeburg). The program ofthe conference consisted offour full days and one halfday ofsessions, with 11 invited plenary talks andover80contributedtalks that re­ quired three parallel sessions. This documents the steadily increasing interest in finite fields and their applications. Finite fields have an inherently fasci­ nating structure and they are important tools in discrete mathematics. Their applications range from combinatorial design theory, finite geometries, and algebraic geometry to coding theory, cryptology, and scientific computing. A particularly fruitful aspect is the interplay between theory and applications which has led to many new perspectives in research on finite fields.

Jungnickel / Niederreiter Finite Fields and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Projective Generalized Reed-Muller Codes over p-adic Numbers and Finite Rings.- Towards a Basis for the Space of Regular Functions in a Tower of Function Fields Meeting the Drinfeld-Vladut Bound.- Self-Dual Normal Bases and Related Topics.- Permutations amongst the Dembowski-Ostrom Polynomials.- Associative Rational Functions in Two Variables.- A Note on the Minimal Polynomial of the Product of Linear Recurring Sequences.- Gelfond-Gramain’s Theorem for Function Fields.- On Generalized Bent and q-ary Perfect Nonlinear Functions.- Divisible Designs Admitting, as an Automorphism Group, an Orthogonal Group or a Unitary Group.- A Permutation of a Small Infinite Field.- Almost Perfect Nonlinear Power Functions on GF(2n): A New Case for n Divisible by 5.- On Non-Abelian Semi-Regular Relative Difference Sets.- Applications of Arithmetical Geometry to Cryptographic Constructions.- Gauß Periods in Finite Fields.- Constructions of Orthomorphisms of ?2n.- Period Polynomials for $$
{F_{{{p^{2}}}}}
$$ of Fixed Small Degree.- Universal Generators for Primary Closures of Galois Fields.- Irreducible Polynomials Generated by Decimations.- Decoding Reed-Muller Codes beyond Half the Minimum Distance.- On Binary Cyclic Codes With Few Weights.- Mac Williams Identities for Linear Codes over Finite Frobenius Rings.- Cyclotomic Function Fields with Many Rational Places.- On the Siamese Twin Designs.- On the Brauer Monoid for Finite Fields.- Algorithms for Factoring Polynomials over Finite Fields.- Gauss Sums over Quasi-Frobenius Rings.- On the Early History of Galois Fields.- Linear Blocking Sets: a Survey.- Comparison of Techniques on Divisibility Properties of Exponential Sums and Applications.- On the Rank of Appearance and the Number of Zeros of the Lucas Sequences over Fq.- APermutation Problem for Finite Fields.- The L-Function of Gold Exponential Sum.- On Permutation Polynomials and Derivable Translation Planes.- Pure L-Functions from Algebraic Geometry over Finite Fields.- Incomplete Additive Character Sums and Applications.- Applications of Algebraic Curves to Constructions of Codes and Almost Perfect Sequences.- Author Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.