Kalinathan / S. / R. | Computational Intelligence in Data Science | Buch | 978-3-031-16366-1 | sack.de

Buch, Englisch, Band 654, 368 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 581 g

Reihe: IFIP Advances in Information and Communication Technology

Kalinathan / S. / R.

Computational Intelligence in Data Science

5th IFIP TC 12 International Conference, ICCIDS 2022, Virtual Event, March 24-26, 2022, Revised Selected Papers
1. Auflage 2022
ISBN: 978-3-031-16366-1
Verlag: Springer International Publishing

5th IFIP TC 12 International Conference, ICCIDS 2022, Virtual Event, March 24-26, 2022, Revised Selected Papers

Buch, Englisch, Band 654, 368 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 581 g

Reihe: IFIP Advances in Information and Communication Technology

ISBN: 978-3-031-16366-1
Verlag: Springer International Publishing


This book constitutes the refereed post-conference proceedings of the Fifth IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2022, held virtually, in March 2022.

The 28 revised full papers presented were carefully reviewed and selected from 96 submissions. The papers cover topics such as computational intelligence for text analysis; computational intelligence for image and video analysis; blockchain and data science.

Kalinathan / S. / R. Computational Intelligence in Data Science jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Comparative Analysis of Sensor-based Human Activity Recognition using Artificial Intelligence.- A survey on cervical cancer detection and classification using deep learning.- Counting Number of people and social distance detection using deep learning.- Analysis of Age Sage Classification for Students’ Social Engagement using REPTree & Random Forest.- Factual Data Protection Procedure on IoT-Based Customized Medicament Innovations.- Deep Learning based Covid-19 patients detection.- A progressive approach of designing and analysis of Solar and wind stations integrated with the grid connected systems.- A Survey on Techniques and Methods of Recommender System.- Live Social Spacing Tracker Based on Domain Detection.- Assessing Layer Normalization with BraTS MRI Data in a Convolution Neural Net .- Data set creation and Empirical analysis for detecting signs of depression from social media postings.- Classification and Prediction of lung cancer with histopathological images using VGG-19 architecture.- Analysis of the Impact of White Box Adversarial Attacks in ResNet While Classifying Retinal Fundus Images.- Factors Influencing the Helpfulness of Online Consumer Reviews.- Perspective Review on Deep Learning Models to Medical Image Segmentation.- Real Time Captioning and Notes Making of Online classes.- Disease Identification in Tomato Leaf using pre-trained ResNet and Deformable Inception.- Allowance of Driving Based on Drowsiness Detection using Audio and Video Processing.- Detection and classification of Groundnut Leaf Disease using Convolutional Neural Network.- Enhanced Residual Connections Method for Low Resolution Images in Rice Plant Disease Classification.- COVI-PROC.- GPS Tracking Traffic Management System using Priority Based Algorithm.- Accident detection system using deep learning.- Monitoring of PV Modules and Hotspot Detection using Convolution Neural Network based Approach.- Literature review on human behavioural analysis using deep learning algorithm.- Animproved Ensemble Extreme Learning Machine classifier for detecting diabetic retinopathy in fundus images.- Text Mining Amazon Mobile Phone Reviews: Insight from an Exploratory Data Analysis.- Supervised Learning of Procedures from Tutorial Videos



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.