Buch, Englisch, 174 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 278 g
Simplified Tools and Techniques
Buch, Englisch, 174 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 278 g
Reihe: Mathematics and its Applications
ISBN: 978-0-367-78014-2
Verlag: CRC Press
The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject.
In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension.
Features
- Provides a clear indication and understanding of the subject on how to change indices
- Describes the original evolution of symbols necessary for tensors
- Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems
- Presents the correlation between critical concepts
- Covers general operations and concepts
Zielgruppe
Professional
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Naturwissenschaften Physik Mechanik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Mathematik | Informatik Mathematik Operations Research
- Technische Wissenschaften Technik Allgemein Industrial Engineering
Weitere Infos & Material
Part I Formalism of Tensor Calculus. 1. Prerequisites for Tensors. 2. Concept of Tensors. 3. Riemannian Metric and Fundamental Tensors. 4. Christoffel Three-Index Symbols (Brackets) and Covariant Differentiation. 5. Properties of Curves in Vn and Geodesics. 6. Riemann Symbols (Curvature Tensors). Part II. Application of Tensors. 7. Applications of Tensors in General Theory of Relativity. 8. Tensors in Continuum Mechanics. 9. Tensors in Geology. 10. Tensors in Fluid Dynamics. Appendix. Remarks. Bibliography.