Buch, Englisch, Band 86, 202 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 335 g
Data-Driven Fingerprinting and Threat Intelligence
Buch, Englisch, Band 86, 202 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 335 g
Reihe: Advances in Information Security
ISBN: 978-3-030-74666-7
Verlag: Springer International Publishing
First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Basedon this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware.
The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques.
Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung Netzwerksicherheit
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Handheld Programmierung
Weitere Infos & Material
Introduction.- Background and Related Work.- Fingerprinting Android Malware Packages.- Robust Android Malicious Community Fingerprinting.- Android Malware Fingerprinting Using Dynamic Analysis.- Fingerprinting Cyber-Infrastructures of Android Malware.- Portable Supervised Malware Fingerprinting using Deep Learning.- Resilient and Adaptive Android Malware Fingerprinting and Detection.- Conclusion.