Karimi | Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems | Buch | 978-0-12-822473-1 | sack.de

Buch, Englisch, 419 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 660 g

Karimi

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems


Erscheinungsjahr 2021
ISBN: 978-0-12-822473-1
Verlag: William Andrew Publishing

Buch, Englisch, 419 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 660 g

ISBN: 978-0-12-822473-1
Verlag: William Andrew Publishing


Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems.

Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers - mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more.
Karimi Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Section A: Fault diagnosis development 1. Model-based fault detection and isolation for dynamical systems 2. Fault-tolerant control for dynamical systems 3. Data-driven techniques in fault diagnosis 4. Soft computing methods for fault detection and isolation

Section B: Failure prognosis analysis 5. Model-Based failure prognosis techniques 6. Data-driven based reliability modeling and identification for failure prognosis 7. Intelligent decisions techniques for failure prognosis 8. Design optimization using reliability and maintenance Techniques

Section C: Case studies 9. Fault diagnosis and failure prognosis in mechanical systems 10. Fault diagnosis and failure prognosis in electrical systems 11. Fault diagnosis and failure prognosis in hydraulic systems 12. Fault diagnosis and failure prognosis in biomedical systems


Karimi, Hamid Reza
Dr. Karimi received the B.Sc. (First Hons.) degree in power systems from the Sharif University of Technology, Tehran, Iran, in 1998, and the M.Sc. and Ph.D. (First Hons.) degrees in control systems engineering from the University of Tehran, Tehran, in 2001 and 2005, respectively. His research interests are in the areas of control systems/theory, mechatronics, networked control systems, intelligent control systems, signal processing, vibration control, ground vehicles, structural control, wind turbine control and cutting processes. He is an Editorial Board Member for some international journals and several Technical Committee. Prof. Karimi has been presented a number of national and international awards, including Alexander-von-Humboldt Research Fellowship Award (in Germany), JSPS Research Award (in Japan), DAAD Research Award (in Germany), August-Wilhelm-Scheer Award (in Germany) and been invited as visiting professor at a number of universities in Germany, France, Italy, Poland, Spain, China, Korea, Japan, India.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.