Causes and Consequences
Buch, Englisch, 432 Seiten, Format (B × H): 178 mm x 246 mm, Gewicht: 953 g
ISBN: 978-1-118-86734-1
Verlag: Wiley
Supramolecular chemistry deals with the organisation of molecules into defined assemblies using non-covalent interactions, including weaker and reversible interactions such as hydrogen bonds, and metal-ligand interactions. The aspect of stereochemistry within such chemical architectures, and in particular chirality, is of special interest as it impacts on considerations of molecular recognition, the development of functional materials, the vexed question of homochirality, nanoscale effects of interactions at interfaces, biocatalysis and enzymatic catalysis, and applications in organic synthesis.
Chirality in Supramolecular Assemblies addresses many of these aspects, presenting a broad overview of this important and rapidly developing interdisciplinary field. Topics covered include:
- Origins of molecular and topological chirality
- Homochirogenesis
- Chirality in crystallinity
- Host-guest behavior
- Chiral influences in functional materials
- Chirality in network solids and coordination solids
- Aspects of chirality at interfaces
- Chirality in organic assemblies
- Chirality related to biocatalysis and enzymes in organic synthesis.
This book is a valuable reference for researchers in the molecular sciences, materials science and biological science working with chiral supramolecular systems. It provides summaries and special insights by acknowledged international experts in the various fields.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
List of Contributors xi
Preface xiii
1 Principles of Molecular Chirality 1
Jean]Claude Chambron and F. Richard Keene
1.1 General Introduction 1
1.2 Geometrical Chirality 2
1.3 Topological Chirality 25
1.4 Conclusion 39
References 39
2 Homochirogenesis and the Emergence of Lifelike Structures 44
Pedro Cintas
2.1 Introduction and Scope 44
2.2 The Racemic State: Mirror Symmetry Breaking 45
2.3 Asymmetric Oligomerization 49
2.4 Biochirality in Active Sites 58
2.5 Conclusions 61
Acknowledgements 61
References 61
3 Aspects of Crystallization and Chirality 65
Roger Bishop
3.1 Introduction 65
3.2 Crystal Space Groups 65
3.3 Fundamentals of Crystallization for a Racemic Mixture 69
3.4 More Complex Crystallization Behavior 71
3.5 Multiple Crystal Forms 74
3.6 Conglomerates Revisited 85
References 90
4 Complexity of Supramolecular Assemblies 94
Jonathan A. Kitchen and Philip A. Gale
4.1 Introduction 94
4.2 Generating Supramolecular Chirality through Assembly of Achiral Components 96
4.3 Enantioselective Supramolecular Assemblies 121
4.4 Conclusions and Future Outlook 134
References 134
5 Chirality in the Host]Guest Behaviour of Supramolecular Systems 142
Nicholas H. Evans and Paul D. Beer
5.1 An Introduction to Chiral Recognition and its Importance 142
5.2 Chiral Hosts for Chiral Guests 143
5.3 Conclusions: Summary and Future Directions 155
References 156
6 Chiral Influences in Functional Molecular Materials 159
David B. Amabilino
6.1 Introduction 159
6.2 Functional Molecular Materials in Different States 161
6.3 Switching 168
6.4 Conducting Materials 171
6.5 Magnetic Materials 173
6.6 Sensors 177
6.7 Conclusions and Outlook 180
Acknowledgements 181
References 181
7 Chirality in Network Solids 190
David R. Turner
7.1 Introduction 190
7.2 Chirality in Inorganic Network Solids 191
7.3 Synthesis of Chiral Coordination Polymers 192
7.4 Applications of Chiral Coordination Polymers 207
7.5 Summary and Outlook 209
References 210
8 Chiral Metallosupramolecular Polyhedra 218
Jack K. Clegg and John C. McMurtrie
8.1 Introduction 218
8.2 Basic Design Principles 219
8.3 Chiral Polyhedra from Achiral Components 221
8.4 Stereochemical Communication 231
8.5 Resolution of Racemic Metallo]Supramolecular Polyhedra 236
8.6 Chiral Polyhedra from Chiral Molecular Components 239
8.7 Conclusions and Outlook 250
References 251
9 Chirality at the Solution/Solid]State Interface 257
Iris Destoop and Steven De Feyter
9.1 Self]Assembly at the Solution / Solid]State Interface 257
9.2 Chirality Expression at the Solution / Solid]State Interface 258
9.3 Chiral Induction / Amplification at the Solution / Solid]State Interface 266
9.4 Towards Applications 278
9.5 Conclusions 282
References 282
10 Nanoscale Aspects of Chiral Nucleation and Propagation 285
Edward G. Latter and Rasmita Raval
10.1 Introduction 285
10.2 Systems of Discussion 288
10.3 Conclusions 303
References 304
11 Chirality in Organic Hosts 307
Daniel Fankhauser and Christopher J. Easton
11.1 Introduction 307
11.2 Chiral Hosts in Analytical Applications 307
11.3 Chiral Hosts in Asymmetric Reactions 313
11.4 Conclusion 337
Acknowledgements 338
References 338
12 Chirality Related to Biocatalysis and Enzymes in Organic Synthesis 343
Declan P. Gavin and Anita R. Maguire
12.1 Introduction 343
12.2 Biocatalysis 344
12.3 Biocatalytic Methodologies: Kinetic/Dynamic Kinetic Resolution and Asymmetric Transformations/Chemoselective Desymmetrizations 348
12.4 Optimization of Biocatalyst Performance 351
12.5 Protein Engineering 352
12.6 Hydrolysis/Reverse Hydrolysis 356
12.7 Redox Reactions 366
12.8 C]C and Other C]X Bond Formation 380
12.9 Future and Outlook 385
References 385
Index 407