E-Book, Deutsch, 327 Seiten, E-Book
Kessler Multivariate Datenanalyse
1. Auflage 2007
ISBN: 978-3-527-60966-6
Verlag: Wiley-VCH
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
für die Pharma-, Bio- und Prozessanalytik
E-Book, Deutsch, 327 Seiten, E-Book
ISBN: 978-3-527-60966-6
Verlag: Wiley-VCH
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Die multivariate Datenanalyse beschäftigt sich mit Verfahren, mit denen man aus einer Fülle von Daten - wie z. B. Prozessdaten, Messdaten, Mikroarraydaten, Spektren - die wesentlichen, unabhängigen Informationen herausarbeiten kann. Es eröffnen sich somit ganz neue Möglichkeiten für eine effiziente und gleichzeitig umfangreiche Auswertung. Alle Methoden und Verfahren der multivariaten Datenanalyse werden anhand von praktischen Beispielen mit einer beigefügten Demoversion des Programms "The Unscrambler". Der Leser ist somit in der Lage, das Erlernte direkt auf seine eigenen Fragestellungen anzuwenden.
Autoren/Hrsg.
Weitere Infos & Material
EINFÜHRUNG IN DIE MULTIVARIATE DATENANALYSE
Was ist multivariate Datenanalyse
Datensätze in der multivariaten Datenanalyse
Ziele der multivariaten Datenanalyse
Prüfen auf Normalverteilung
Finden von Zusammenhängen
HAUPTKOMPONENTENANALYSE
Geschichte der Hauptkomponentenanalyse
Bestimmung der Hauptkomponenten
Mathematisches Modell der Hauptkomponentenanalyse
PCA für drei Dimensionen
PCA für viele Dimensionen: Gaschromatographische Daten
Standardisierung der Messdaten
PCA für viele Dimensionen: Spektren
Wegweiser zur PCA bei der explorativen Datenanalyse
MULTIVARIATE REGRESSIONSMETHODEN
Klassisch und inverse Kalibration
Univariate lineare Regression
Maßzahlen zur Überprüfung des Kalibriermodells (Fehlergrößen bei der Kalibrierung)
Signifikanz und Interpretation der Regressionskoeffizienten
Grafische Überprüfung des Kalibriermodels
Multiple lineare Regression (MLR)
Beispiel für MLR - Auswertung eines Versuchsplans
Hauptkomponentenregression (Principal Component Regression, PCR)
Partial Least Squares Regression (PLS Regression)
Geschichte der PLS
PLS Regression für eine Y-Variable (PLS1)
PLS Regression für mehrere Y-Variablen (PLS2)
KALIBRIEREN, VALIDIEREN DER MODELLE
Zusammenfassung der Kalibrierschritte - Kalibrierfehler
Möglichkeiten der Validierung
Bestimmen des Kalibrier- und Validierdatensets
Ausreißer
Vorhersagebereich der vorhergesagten Y-Daten
DATENVORBEREITUNG BEI SPEKTREN
Spektroskopische Transformationen
Spektrennormierung
Glättung
Ableitungen
Korrektur von Streueffekten
Vergleich der Vorbehandlungsmethoden
EINE ANWENDUNG IN DER PRODUKTIONSÜBERWACHUNG
Vorversuche
Erstes Kalibriermodell
Einsatz des Kalibriermodells - Validierphase
Offset in den Vorhersagewerten der zweiten Testphase
Zusammenfassung der Schritte bei der Erstellung eines Online-Vorhersagemodells
TUTORIAL ZUM UMGANG MIT DEM PROGRAMM "THE UNSCRAMBLER" AUF DER DEMO-CD
Durchführung einer Hauptkomponentenanalyse (PCA)
Datenvorverarbeitung
Durchführung einer PLS-Regression mit einer Y-Variablen
Verwendung des Regressionsmodells - Vorhersage des Theophyllingehalts für Testdaten
Export der Unscrambler-Modelle zur Verwendung in beliebigen Anwendungen
Checkliste für spektroskopische Kalibrierungen mit dem Unscrambler