Khesin / Wendt | The Geometry of Infinite-Dimensional Groups | E-Book | sack.de
E-Book

E-Book, Englisch, 304 Seiten, eBook

Khesin / Wendt The Geometry of Infinite-Dimensional Groups


2009
ISBN: 978-3-540-77263-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 304 Seiten, eBook

ISBN: 978-3-540-77263-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. The text includes many exercises and open questions.

B.Khesin's areas of research are infinite-dimensional Lie groups, integrable systems, Poisson geometry, and topological hydrodynamics. Together with Vladimir Arnold he is the author of the monograph on 'Topological methods in hydrodynamics', which has become a standard reference in mathematical fluid dynamics. He was a Sloan research fellow in 1997-1999 and a Clay Mathematics Institute book fellow in 2006-2007, as well as an Andre-Aizenstadt prize recepient in 1998. R.Wendt's fields of research include the geometry and representation theory of infinite dimensional Lie groups and algebras, related geometric structures, and mathematical physics. He is also interested in mathematical finance and 'real world' applications of financial modelling

Khesin / Wendt The Geometry of Infinite-Dimensional Groups jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- Introduction.- I Preliminaries.- II Infinite-dimensional Lie Groups: Their Geometry, Orbits and Dynamical Systems.- III Applications of Groups: Topological and Holomorphic Gauge Theories.- Appendices.- A1 Root Systems.- A2 Compact Lie Groups.- A3 Krichever-Novikov Algebras.- A4 Kähler Structures on the Virasoro and Loop Group Coadjoint Orbits.- A5 Metrics and Diameters of the Group of Hamiltonian Diffeomorphisms.- A6 Semi-Direct Extensions of the Diffeomorphism Group and Gas Dynamics.- A7 The Drinfeld-Sokolov Reduction.- A8 Surjectivity of the Exponential Map on Pseudo-Differential Symbols.- A9 Torus Actions on the Moduli Space of Flat Connections.- Bibliography.- Index


B.Khesin's areas of research are infinite-dimensional Lie groups, integrable systems, Poisson geometry, and topological hydrodynamics. Together with Vladimir Arnold he is the author of the monograph on "Topological methods in hydrodynamics", which has become a standard reference in mathematical fluid dynamics. He was a Sloan research fellow in 1997-1999 and a Clay Mathematics Institute book fellow in 2006-2007, as well as an Andre-Aizenstadt prize recepient in 1998. R.Wendt's fields of research include the geometry and representation theory of infinite dimensional Lie groups and algebras, related geometric structures, and mathematical physics. He is also interested in mathematical finance and 'real world' applications of financial modelling



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.