Kirillov | Representation Theory and Noncommutative Harmonic Analysis II | Buch | 978-3-642-08126-2 | sack.de

Buch, Englisch, 270 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Encyclopaedia of Mathematical Sciences

Kirillov

Representation Theory and Noncommutative Harmonic Analysis II

Homogeneous Spaces, Representations and Special Functions
1. Auflage. Softcover version of original hardcover Auflage 1995
ISBN: 978-3-642-08126-2
Verlag: Springer

Homogeneous Spaces, Representations and Special Functions

Buch, Englisch, 270 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Encyclopaedia of Mathematical Sciences

ISBN: 978-3-642-08126-2
Verlag: Springer


At first only elementary functions were studied in mathematical analysis. Then new functions were introduced to evaluate integrals. They were named special functions: integral sine, logarithms, the exponential function, the prob ability integral and so on. Elliptic integrals proved to be the most important. They are connected with rectification of arcs of certain curves. The remarkable idea of Abel to replace these integrals by the corresponding inverse functions led to the creation of the theory of elliptic functions. They are doubly periodic functions of a complex variable. This periodicity has led to consideration of the lattice of periods and to linear-fractional trans formations of the complex plane which leave this lattice invariant. The group of these transformations is isomorphic to the quotient group of the group 8L(2, Z) of unimodular matrices of the second order with integral elements with respect to its center. Investigation of properties of elliptic functions led to the study of automorphic functions and forms. This gave the first connec tion between the theory of groups and this important class of functions. The further development of the theory of automorphic functions was related to geometric concepts connected with the fact that the group of linear-fractional transformations with real elements can be realized as the group of motions of th the Lobachevskij plane. We also note that at the beginning of the 19 century Gauss used the group 8L(2, Z) in his papers on the theory of indeterminate quadratic forms.

Kirillov Representation Theory and Noncommutative Harmonic Analysis II jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. Harmonic Analysis on Homogeneous Spaces.- II. Representations of Lie Groups and Special Functions.- Author Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.