Kissin Polyethylene
1. Auflage 2012
ISBN: 978-1-56990-521-0
Verlag: Hanser Publications
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
End-Use Properties and their Physical Meaning
E-Book, Deutsch, 154 Seiten
ISBN: 978-1-56990-521-0
Verlag: Hanser Publications
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The book provides a bridge between the meaning of engineering end-use parameters of polyethylene resins (HDPE, LDPE, LLDPE, VLDPE) and their molecular characteristics. The main goal is to translate common end-use characteristics of the resins (melt index, density, melting point) or properties of standard items manufactured from the resins (dart impact strength and tear strength of film, top load of a bottle, etc.) into the universal language of the polymer science, average molecular weight and molecular weight distribution of a polymer, composition and a statistical description of a copolymer, parameters of the stress-strain curve of a semi-crystalline material, etc.
Autoren/Hrsg.
Weitere Infos & Material
1;Table of Content;6
2;Introduction;10
3;1 Educational Minimum: Manufacture, Structure, and Mechanical Properties of Polyethylene Resins;14
3.1;1.1 Classification and Applications of Polyethylene Resins;14
3.2;1.2 Catalysts for Synthesis of Polyethylene Resins;17
3.3;1.3 Industrial Processes for the Manufacture of Polyethylene Resins;19
3.4;1.4 Chemistry of Ethylene Polymerization Reactions;21
3.5;1.5 Molecular Weight Distribution of Polymers and Methods of its Analysis;24
3.6;1.6 Examples of Molecular Weight Distribution of Polyethylene Resins;27
3.7;1.7 Copolymer Statistics and its Application to Description of LLDPE and VLDPE Resins;33
3.8;1.8 Compositional Uniformity of Commercial Polyethylene Resins;35
3.9;1.9 Morphology of Polyethylene Resins;39
3.10;1.10 Mechanical Deformation of Polyethylene Resins;42
3.11;References;44
4;2 Melt Index and Melt Flow Ratio of Polyethylene Resin;48
4.1;2.1 Introduction;48
4.2;2.2 Basics of Polymer Rheology; Melt Flow Through a Capillary50
4.2.1;2.2.1 Flow of Polymer Melt Through a Cylindrical Capillary;52
4.2.2;2.2.2 Melt Index of Newtonian Liquid;53
4.3;2.3 Melt Flow of Monodisperse Polyethylene Resins;54
4.4;2.4 Additivity Rules for Viscosity; Calculation of Melt Indexes and Melt Flow Ratios from Molecular Weight Distribution Data56
4.4.1;2.4.1 Additivity Rules for Zero-Shear Viscosity .0;56
4.4.2;2.4.2 Additivity Rules for Effective Viscosity and General Expressions for Flow of Non-Newtonian Multi-Component Melt;57
4.5;2.5 Examples of Melt Flow Rates and Melt Flow Ratios for Polyethylene Resins of Different Types;61
4.5.1;2.5.1 LLDPE Resins Produced with Supported Ziegler-Natta Catalysts;61
4.5.2;2.5.2 HDPE Resins with Broad Molecular Weight Distributions;64
4.5.3;2.5.3 Effect of Long-Chain Branching;66
4.6;References;67
5;3 Melting Point of Polyethylene Resin;70
5.1;3.1 Introduction;70
5.2;3.2 Melting Point of HDPE Resin;71
5.3;3.3 DSC Melting Curves and Melting Points of LLDPE and VLDPE Resins Produced with Single-Site Catalysts;74
5.3.1;3.3.1 Crystallization Process of Compositionally Uniform Ethylene/a-Olefin Copolymers;77
5.3.2;3.3.2 Model for Secondary Crystallization;78
5.3.3;3.3.3 Combined DSC Model for LLDPE and VLDPE Resins;79
5.4;3.4 DSC Melting Curves and Melting Points of LLDPE Resins Produced with Multi-Site Ziegler-Natta Catalysts;81
5.5;References;84
6;4 Crystallinity Degree and Density of Polyethylene Resins;86
6.1;4.1 Crystallinity Degree;86
6.1.1;4.1.1 Measurement Methods;86
6.1.2;4.1.2 Definition of Crystallinity Degree of LLDPE and VLDPE Resins Based on Copolymer Statistics;88
6.2;4.2 Density;89
6.2.1;4.2.1 Measurement Methods;90
6.2.2;4.2.2 Physical Meaning of Polyethylene Density;90
6.3;References;93
7;5 End-Use Mechanical Properties of Polyethylene Film;96
7.1;5.1 Mechanical Properties of Polyethylene Resins;96
7.1.1;5.1.1 Effect of Testing Speed on Mechanical Properties;97
7.1.2;5.1.2Orientation in Polyethylene Film;98
7.2;5.2 Dart Impact Strength of LLDPE Film;100
7.2.1;5.2.1 Description of Dart Impact Test;100
7.2.2;5.2.2 Model of Dart Impact Test;102
7.2.2.1;5.2.2.1 Effects of Mechanical Properties of Resins;105
7.2.2.2;5.2.2.2 Comparison of Film Made from Ethylene/Butene and Ethylene/Hexene Copolymers;106
7.2.2.3;5.2.2.3 Effect of Copolymer Composition;107
7.2.2.4;5.2.2.4 Compositionally Uniform and Compositionally Nonuniform Resins;108
7.3;5.3 Tear Strength of LLDPE and LDPE Film;110
7.3.1;5.3.1 Description of Tear Test;110
7.3.2;5.3.2Physical Details of Tear Test;110
7.3.3;5.3.3Model of Tear Test;115
7.3.3.1;5.3.3.1 Effect of Pendulum Speed;120
7.3.3.2;5.3.3.2 Effects of Mechanical Properties of Resins;120
7.3.3.3;5.3.3.3 Effect of Film Orientation;121
7.3.3.4;5.3.3.4 Comparison of Tear Strength of Ethylene/Butene and Ethylene/Hexene Copolymers;123
7.3.3.5;5.3.3.5Low Density Polyethylene;123
7.4;5.4 Comparison of Factors Determining Results of Tear Test and Dart Impact Test of LLDPE Film;124
7.5;References;125
8;6 End-Use Testing of High Molecular Weight HDPE and MDPE Resins;128
8.1;6.1 Top Load Test of HDPE Containers;128
8.1.1;6.1.1 Mechanics of Top Load Test;129
8.2;6.2 Dynamic Burst Test of HDPE Tubing and Pipes;131
8.3;6.3 Static Burst Test and Long-Term Fatigue in Polyethylene;132
8.3.1;6.3.1 Principal Equation for Low-Stress Failure;133
8.3.2;6.3.2 Physical Mechanism of Polymer Failure under Low Stress;135
8.4;6.4 Environmental Stress-Cracking Resistance;138
8.4.1;6.4.1 Description of ESCR Test;138
8.4.2;6.4.2 Physics of Environmental Stress Cracking;139
8.4.3;6.4.3 Structural Parameters of HDPE Resins Affecting ESCR;140
8.4.4;6.4.4 Relationship between ESCR and Long-Term Fatigue in Polyethylene;143
8.4.5;6.4.5 Mechanism of Environmental Stress Cracking;145
8.5;References;148
9;Index;152