Klostermeier / Hammann | RNA Structure and Folding | E-Book | sack.de
E-Book

E-Book, Englisch, 430 Seiten

Klostermeier / Hammann RNA Structure and Folding

Biophysical Techniques and Prediction Methods
1. Auflage 2013
ISBN: 978-3-11-028495-9
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Biophysical Techniques and Prediction Methods

E-Book, Englisch, 430 Seiten

ISBN: 978-3-11-028495-9
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



While structure-function relationships of proteins have been studied for a long time, structural studies of RNA face additional challenges. Nevertheless, with the continuous discovery of novel RNA molecules with key cellular functions and of novel pathways and interaction networks, the need for structural information of RNA is still increasing. This volume provides an introduction into techniques to assess structure and folding of RNA. Each chapter explains the theoretical background of one technique, and illustrates possibilities and limitations in selected application examples.
Klostermeier / Hammann RNA Structure and Folding jetzt bestellen!

Zielgruppe


Researchers and advanced students in the life sciences

Weitere Infos & Material


1;Preface;5
2;List of contributing authors;7
3;Contents;13
4;1 Optical spectroscopy and calorimetry;23
4.1;1.1 Introduction;23
4.2;1.2 Absorption spectroscopy;23
4.3;1.3 Fluorescence;30
4.4;1.4 Circular dichroism;30
4.5;1.5 Transient electric birefringence;35
4.6;1.6 Calorimetry;39
4.6.1;1.6.1 Isothermal titration calorimetry;40
4.6.2;1.6.2 Differential scanning calorimetry;43
4.7;1.7 Acknowledgments;46
4.7.1;References;46
5;2 Footprinting methods for mapping RNA-protein and RNA-RNA interactions;51
5.1;2.1 Introduction;51
5.2;2.2 Principles and applications of footprinting;52
5.3;2.3 Tools for footprinting: what should we know about probes?;54
5.3.1;2.3.1 RNases;54
5.3.2;2.3.2 Chemicals;57
5.3.2.1;2.3.2.1 Base-specific reagents;57
5.3.2.2;2.3.2.2 Ribose-phosphate backbone–specific reagents;57
5.4;2.4 Examples of RNP or RNA-RNA complexes analyzed by footprinting;59
5.4.1;2.4.1 Determination of the mRNA-binding site of Crc by SHAPE footprinting;59
5.4.2;2.4.2 Footprinting mapping of sRNA-mRNA interaction;61
5.4.3;2.4.3 Footprinting reveals mimicry of mRNA and tRNA for regulation;63
5.4.4;2.4.4 Difficulties in probing transient interactions by footprinting: the case of ribosomal protein S1-RNA complex;65
5.5;2.5 Concluding remarks;67
5.6;2.6 Acknowledgments;68
5.6.1;References;68
6;3 Chemical approaches to the structural investigation of RNA in solution;73
6.1;3.1 Introduction;73
6.2;3.2 Similar chemistry in different concepts: sequencing, probing, and interference;74
6.3;3.3 Sequencing and probing by Maxam and Gilbert chemistry;75
6.4;3.4 Application of Sanger sequencing to probing;79
6.5;3.5 Further electrophilic small molecule probes;80
6.6;3.6 Probing agents with nuclease activity;81
6.7;3.7 Probing agents involving radical chemistry;83
6.8;3.8 Matching suitable probes to structural features;83
6.9;3.9 Chemical modification interference;84
6.10;3.10 Nucleotide analog interference mapping;85
6.11;3.11 Combination and interplay with other methods;87
6.12;3.12 Application to an artificial ribozyme;88
6.13;3.13 Conclusion and outlook;91
6.13.1;References;91
7;4 Bioorthogonal modifications and cycloaddition reactions for RNA chemical biology;97
7.1;4.1 Introduction;97
7.2;4.2 Bioorthogonal conjugation strategies;98
7.2.1;4.2.1 1,3-dipolar cycloaddition reactions ([3+2] cycloaddition);98
7.2.1.1;4.2.1.1 Copper-catalyzed azide-alkyne cycloaddition;98
7.2.1.2;4.2.1.2 Strain-promoted azide-alkyne cycloaddition;99
7.2.1.3;4.2.1.3 Nitrile oxides as 1,3-dipoles for metal-free cycloadditions;100
7.2.1.4;4.2.1.4 Photoactivated 1,3-dipolar cycloadditions;102
7.2.2;4.2.2 Inverse electron demand Diels-Alder reaction ([4+2] cycloaddition);102
7.2.3;4.2.3 Staudinger reaction of azides and phosphines;103
7.3;4.3 Synthetic strategies for RNA functionalization: installation of reactive groups for cycloadditions;103
7.3.1;4.3.1 Chemical synthesis of modified RNA;104
7.3.1.1;4.3.1.1 Alkyne-containing phosphoramidites for solid-phase synthesis;104
7.3.1.2;4.3.1.2 Solid-phase synthesis of azide-containing RNA;105
7.3.1.3;4.3.1.3 Postsynthetic modification of RNA with azides and alkynes;105
7.3.1.4;4.3.1.4 Functionality transfer reaction using s6G-modified DNA;106
7.3.2;4.3.2 Enzymatic incorporation of functional groups for click chemistry;107
7.3.2.1;4.3.2.1 In vitro transcription using modified nucleotides;108
7.3.2.2;4.3.2.2 Enzymatic posttranscriptional modification;108
7.4;4.4 Case studies for applications of click chemistry in RNA chemical biology;110
7.4.1;4.4.1 Synthesis of chemically modified ribozymes;110
7.4.2;4.4.2 Monitoring RNA synthesis and turnover by metabolic labeling and click chemistry;112
7.4.3;4.4.3 Bioorthogonal modification of siRNAs for detection, improved stability, and delivery;113
7.5;4.5 Summary and conclusions;115
7.6;4.6 Acknowledgments;115
7.6.1;References;116
8;5 Analysis of RNA conformation using comparative gel electrophoresis;123
8.1;5.1 The principle behind the analysis of the structure of branched nucleic acids by gel electrophoresis;123
8.2;5.2 Helical discontinuities in duplex RNA;125
8.3;5.3 The direction of a helical bend;126
8.4;5.4 Comparative gel electrophoresis of branched nucleic acids;126
8.5;5.5 Comparative gel electrophoresis of four-way DNA junctions;130
8.6;5.6 Analysis of the structure of four-way RNA junctions;133
8.7;5.7 The 4H junctions of the U1 snRNA and the hairpin ribozyme;134
8.8;5.8 A more complex junction found in the HCV IRES;134
8.9;5.9 Analysis of the structure of three-way RNA junctions;137
8.9.1;5.9.1 A three-way junction of the HCV IRES element;137
8.9.2;5.9.2 Three-way junctions are the key architectural elements of the VS ribozyme;138
8.9.3;5.9.3 The hammerhead ribozyme is a complex three-way helical junction;140
8.10;5.10 Some final thoughts;140
8.11;5.11 Acknowledgments;142
8.11.1;References;142
9;6 Virus RNA structure deduced by combining X-ray diffraction and atomic force microscopy;147
9.1;6.1 Introduction;147
9.2;6.2 Why don’t we learn more about RNA from X-ray crystallography?;147
9.3;6.3 X-ray studies revealing RNA;148
9.4;6.4 Secondary structure prediction;150
9.5;6.5 Generalized ssRNA secondary structural motifs;151
9.6;6.6 The folding of RNA in STMV;153
9.7;6.7 Atomic force microscopy;155
9.8;6.8 Preparation of viral RNA samples for AFM;158
9.9;6.9 Atomic force microscopy of viral ssRNAs;159
9.10;6.10 AFM results for extended STMV RNA;162
9.11;6.11 ssRNA in T = 3 icosahedral viruses;166
9.12;6.12 A model for assembly of STMV inspired by crystallography and AFM;169
9.13;6.13 AFM of large ssRNA viruses;172
9.13.1;References;174
10;7 Investigating RNA structure and folding with optical tweezers;179
10.1;7.1 Introduction;179
10.2;7.2 Single-RNA force measurements with optical tweezers;180
10.3;7.3 Probing RNA and RNA-protein interactions: selected examples;182
10.3.1;7.3.1 Probing the structure and the folding dynamics of RNA hairpins;182
10.3.2;7.3.2 Exploring the folding dynamics of complex RNA structures in presence of proteins;194
10.4;7.4 Conclusion;200
10.5;7.5 Acknowledgments;200
10.5.1;References;200
11;8 Fluorescence resonance energy transfer as a tool to investigate RNA structure and folding;203
11.1;8.1 An introduction to fluorescence resonance energy transfer;203
11.2;8.2 Introduction of donor and acceptor fluorophores into RNAs and RNA/protein complexes;205
11.3;8.3 Ensemble FRET;206
11.3.1;8.3.1 Steady-state FRET;206
11.3.2;8.3.2 Time-resolved FRET;208
11.4;8.4 Single-molecule FRET;211
11.4.1;8.4.1 Instrumentation and experimental procedure;213
11.4.2;8.4.2 Data analysis;215
11.4.2.1;8.4.2.1 Identifying single-molecule events;215
11.4.2.2;8.4.2.2 Correction for instrument nonnonideality;215
11.4.2.3;8.4.2.3 The Förster distance R0;217
11.4.2.4;8.4.2.4 The orientation factor k2;218
11.4.2.5;8.4.2.5 Analysis of FRET histograms;219
11.4.3;8.4.3 FRET data and RNA folding;220
11.4.4;8.4.4 From FRET data to structural models of RNA and RNA/protein complexes;220
11.5;8.5 Selected examples;221
11.5.1;8.5.1 Steady-state FRET: ribozymes, rRNA, and RNA polymerase transcription complexes;221
11.5.2;8.5.2 Time-resolved FRET: the hairpin ribozyme;226
11.5.3;8.5.3 Single-molecule FRET: folding of large ribozymes and transcription by RNA polymerases;228
11.5.4;8.5.4 Single-molecule FRET and modeling of complex structures;229
11.6;8.6 Perspectives;230
11.7;8.7 Acknowledgments;231
11.7.1;References;231
12;9 RNA studies by small angle X-ray scattering in solution;237
12.1;9.1 Introduction to SAXS;237
12.2;9.2 SAXS experiment;238
12.2.1;9.2.1 Sample preparation;238
12.2.2;9.2.2 Form and structure factor: particle interactions;239
12.3;9.3 Methods;241
12.3.1;9.3.1 Distance distribution function;241
12.3.2;9.3.2 Overall parameters: radius of gyration, molecular mass, and volume;241
12.4;9.4 Modeling;243
12.4.1;9.4.1 Ab initio modeling;243
12.4.1.1;9.4.1.1 Bead models;243
12.4.1.2;9.4.1.2 Dummy residue models;244
12.4.1.3;9.4.1.3 Multiphase models;244
12.4.1.4;9.4.1.4 Comparison of multi ple models;245
12.4.2;9.4.2 SAXS and complementary methods;245
12.4.2.1;9.4.2.1 High-resolution models;245
12.4.2.2;9.4.2.2 Rigid body modeling;246
12.4.3;9.4.3 Flexible systems;247
12.4.4;9.4.4 Mixtures;247
12.5;9.5 Resolution and ambiguity of SAXS data interpretation;248
12.6;9.6 Practical applications;249
12.6.1;9.6.1 Ab initio shape determination;249
12.6.2;9.6.2 Analysis of RNA flexibility;251
12.6.3;9.6.3 Nonstochiometric RNA-protein mixtures and complex formation;253
12.6.4;9.6.4 Structural studies of spliceosome function assisted by SAXS measurements;254
12.6.5;9.6.5 How SAXS helps elucidate riboswitch structure-function relationships;255
12.6.6;9.6.6 Use of SAXS and ASAXS to study the influences of counterions on RNA folding;258
12.6.7;9.6.7 Quantitation of free-energy changes estimated from SAXS 3-D reconstructions;258
12.7;9.7 Conclusions and outlook;259
12.8;9.8 Acknowledgments;260
12.8.1;References;260
13;10 Integrative structure-function analysis of large nucleoprotein complexes;265
13.1;10.1 Summary;265
13.2;10.2 Integrative structure-function analysis of nucleoprotein complexes, example 1: translation complexes;272
13.3;10.3 Integrative structure-function analysis of nucleoprotein complexes, example 2: transcription complexes;275
13.4;10.4 Outlook;277
13.5;10.5 Acknowledgments;278
13.5.1;References;279
13.6;11 Structure and conformational dynamics of RNA determined by pulsed EPR;283
13.6.1;11.1 Introduction;283
13.6.2;11.2 Pulse EPR spectroscopy on RNA;286
13.6.2.1;11.2.1 Spin labeling of nucleic acids;286
13.6.2.2;11.2.2 Theoretical description of the PELDOR experiment;288
13.6.2.3;11.2.3 Practical aspects of the PELDOR experiment;292
13.6.2.4;11.2.4 PELDOR experiments with rigid spin labels;293
13.6.2.5;11.2.5 Data analysis and interpretation;296
13.6.3;11.3 Application examples;298
13.6.3.1;11.3.1 Applications on dsRNA and DNA;299
13.6.3.2;11.3.2 Application on RNA with more complex structure;299
13.6.3.3;11.3.3 Applications on DNA with rigid spin labels;301
13.6.4;11.4 Outlook and summary;302
13.6.5;11.5 Acknowledgments;303
13.6.5.1;References;304
14;12 NMR-based characterization of RNA structure and dynamics;309
14.1;12.1 Introduction;309
14.2;12.2 Part I: RNA structure;310
14.2.1;12.2.1 Primary structure;310
14.2.1.1;12.2.1.1 RNA sequence determinants on structure;310
14.2.1.2;12.2.1.2 Unusual nucleotides;310
14.2.1.3;12.2.1.3 Torsion angles in the polynucleotide sequence;310
14.2.2;12.2.2 Secondary structure: base pairing and helices;311
14.2.2.1;12.2.2.1 Regular structure and base pairing;311
14.2.2.2;12.2.2.2 Helical secondary structure;313
14.3;12.3 Part II: NMR studies of RNA;313
14.3.1;12.3.1 NMR sample preparation and labeling;313
14.3.1.1;12.3.1.1 Sample preparation;313
14.3.1.2;12.3.1.2 Labeling schemes;314
14.3.1.3;12.3.1.3 RNA purification;314
14.3.2;12.3.2 NMR parameters to characterize RNA structure;315
14.3.2.1;12.3.2.1 Sequence-specific assignment of NMR resonances;315
14.3.2.2;12.3.2.2 NMR measurements for torsion angle restraints;319
14.3.2.3;12.3.2.3 NMR measurements for distance restraints;320
14.3.2.4;12.3.2.4 Scalar couplings across hydrogen bonds;320
14.3.2.5;12.3.2.5 Residual dipolar couplings;321
14.3.2.6;12.3.2.6 NMR-based structure calculation;323
14.3.3;12.3.3 NMR parameters to characterize RNA dynamics;323
14.3.3.1;12.3.3.1 NMR measurements for RNA dynamics;324
14.3.3.2;12.3.3.2 Dynamics probed by relaxation parameters;325
14.3.3.3;12.3.3.3 Dynamics probed by residual dipolar couplings;325
14.4;12.4 Part III: examples of RNA tertiary structure;326
14.4.1;12.4.1 Helix-helix interactions;326
14.4.1.1;12.4.1.1 Coaxial stacking;326
14.4.1.2;12.4.1.2 A-platform and A-C platform;327
14.4.2;12.4.2 Helix-strand interactions;327
14.4.2.1;12.4.2.1 Base triples and A-minor motifs;327
14.4.2.2;12.4.2.2 Tetraloops;328
14.4.3;12.4.3 Loop-loop interactions;329
14.4.3.1;12.4.3.1 Kissing loop;329
14.4.3.2;12.4.3.2 Pseudoknot;329
14.5;12.5 Conclusion;330
14.6;12.6 Acknowledgments;330
14.6.1;References;330
15;13 Crystallization of RNA for structure determination by X-ray crystallography;341
15.1;13.1 Introduction;341
15.2;13.2 General strategy for crystallization;341
15.2.1;13.2.1 Oligonucleotides and duplex termini;342
15.2.2;13.2.2 Loop engineering and RNP formation and topological permutation;344
15.2.3;13.2.3 An example of success through construct engineering;345
15.3;13.3 Purity and monodispersity;347
15.4;13.4 Postcrystallization treatments;348
15.5;13.5 Construct design and structure determination;350
15.6;13.6 Conclusion;351
15.7;13.7 Acknowledgments;352
15.7.1;References;352
16;14 RNA structure prediction;357
16.1;14.1 The thermodynamic model of RNA folding;358
16.1.1;14.1.1 Free energy and partition function;358
16.1.2;14.1.2 Abstract shapes;359
16.1.3;14.1.3 Free-energy computation of an RNA structure;360
16.1.4;14.1.4 Influence of solvent;362
16.2;14.2 MFE structure;362
16.3;14.3 Partition folding;363
16.3.1;14.3.1 Suboptimal structures;365
16.3.2;14.3.2 Mean and sampled structures;366
16.3.3;14.3.3 Shape representative structures and shape probabilities;367
16.4;14.4 Structure prediction and multiple alignment;367
16.5;14.5 Beyond secondary structure prediction;371
16.5.1;14.5.1 Pseudoknots;371
16.5.2;14.5.2 RNA-RNA hybridization;375
16.6;14.6 Acknowledgments;379
16.6.1;References;379
17;15 Analyzing, searching, and annotating recurrent RNA three-dimensional motifs;385
17.1;15.1 Characteristics of structured RNAs;385
17.1.1;15.1.1 RNA molecules are structurally diverse;385
17.1.2;15.1.2 “Loops” in RNA secondary structures and RNA 3D motifs;386
17.1.3;15.1.3 The 3D motifs and hierarchical organization of RNA;388
17.1.4;15.1.4 Linker regions and 3D motifs;388
17.2;15.2 Structural diversity of RNA 3D motifs;390
17.2.1;15.2.1 Contribution of RNA chain flexibility to motif diversity;390
17.2.2;15.2.2 Contribution of internucleotide interactions to motif diversity;391
17.3;15.3 Pairwise nucleotide interactions that stabilize RNA 3D motifs;392
17.3.1;15.3.1 Base-pairing interactions and 3D motifs;392
17.3.1.1;15.3.1.1 Occurrence frequencies of base pairs is context dependent;392
17.3.1.2;15.3.1.2 Base-pair isostericity and structure conservation during evolution;393
17.3.2;15.3.2 Base-stacking interactions and 3D motifs;394
17.3.3;15.3.3 Base-phosphate interactions and 3D motifs;394
17.4;15.4 Defining RNA 3D motifs;395
17.4.1;15.4.1 Role of induced fit in RNA motif structure;395
17.4.2;15.4.2 Definition of “classic” RNA 3D motifs;396
17.4.2.1;15.4.2.1 Definition of modular motifs;396
17.4.2.2;15.4.2.2 Conservation of motif sequence and structure;397
17.4.3;15.4.3 Recurrent RNA 3D motifs;397
17.5;15.5 Tools for searching for RNA 3D motifs in atomic-resolution RNA structures;397
17.5.1;15.5.1 MC-Search;398
17.5.2;15.5.2 NASSAM;398
17.5.3;15.5.3 PRIMOS;398
17.5.4;15.5.4 FR3D and WebFR3D;400
17.5.5;15.5.5 Apostolico et al., 2009;400
17.5.6;15.5.6 RNAMotifScan;400
17.5.7;15.5.7 FRMF;401
17.5.8;15.5.8 RNA FRABASE 2.0;401
17.5.9;15.5.9 FASTR3D;401
17.5.10;15.5.10 FRASS;402
17.5.11;15.5.11 R3D-BLAST;402
17.5.12;15.5.12 Comparison of 3D search methods;402
17.6;15.6 Classifying RNA 3D motifs;403
17.6.1;15.6.1 Why classify RNA 3D motifs?;403
17.6.2;15.6.2 How to classify RNA 3D motifs?;403
17.6.3;15.6.3 Criteria for grouping motif instances in the same recurrent family;404
17.6.4;15.6.4 Evaluating 3D motif similarity;405
17.6.5;15.6.5 Application of motif classification criteria;405
17.6.6;15.6.6 Automatic classification of RNA 3D motifs;406
17.7;15.7 RNA 3D motif collections;406
17.7.1;15.7.1 Motif-oriented collections;406
17.7.1.1;15.7.1.1 SCOR;406
17.7.1.2;15.7.1.2 Comparative RNA Web Site;408
17.7.1.3;15.7.1.3 K-turn database;408
17.7.1.4;15.7.1.4 RNAMotifScan;408
17.7.1.5;15.7.1.5 FRMF;408
17.7.1.6;15.7.1.6 RNA 3D Motif Atlas;409
17.7.2;15.7.2 Loop-oriented collections;409
17.7.2.1;15.7.2.1 RNAJunction;409
17.7.2.2;15.7.2.2 RNA STRAND;409
17.7.2.3;15.7.2.3 RLooM;410
17.7.2.4;15.7.2.4 RNA CoSSMos;410
17.7.3;15.7.3 Comparing RNA 3D motif collections;410
17.8;15.8 RNA 3D motifs that “break the rules”;412
17.8.1;15.8.1 The 3D motifs that contain isolated cWW base pairs;412
17.8.2;15.8.2 Composite 3D motifs: 3D motifs composed of more than one loop;414
17.8.3;15.8.3 Motifs comprising linker strands;415
17.8.4;15.8.4 Motifs interacting with adjacent helices;416
17.9;15.9 Conclusions;417
17.10;15.10 Acknowledgments;417
17.10.1;References;418
18;Index;421


Dagmar Klostermeier, University of Münster, Germany; Christian Hammann, School of Engineering and Science, Jacobs University Bremen, Germany.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.