Kolinski | Multiscale Approaches to Protein Modeling | E-Book | www.sack.de
E-Book

E-Book, Englisch, 355 Seiten

Kolinski Multiscale Approaches to Protein Modeling


1. Auflage 2010
ISBN: 978-1-4419-6889-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 355 Seiten

ISBN: 978-1-4419-6889-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The book gives a comprehensive review of the most advanced multiscale methods for protein structure prediction, computational studies of protein dynamics, folding mechanisms and macromolecular interactions. It approaches span a wide range of the levels of coarse-grained representations, various sampling techniques and variety of applications to biomedical and biophysical problems. This book is intended to be used as a reference book for those who are just beginning their adventure with biomacromolecular modeling but also as a valuable source of detailed information for those who are already experts in the field of biomacromolecular modeling and in related areas of computational biology or biophysics.

Kolinski Multiscale Approaches to Protein Modeling jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Contributors;9
4;1 Lattice Polymers and Protein Models;13
4.1;1.1 Reduced Models of Chain Molecules;13
4.2;1.2 Simple Lattice Polymers;16
4.3;1.3 Simple Lattice Polymers with Protein-Like Features;19
4.4;1.4 Minimal Protein-Like Models;21
4.5;1.5 High-Coordination Lattice Protein Models;24
4.6;1.6 Protein Folding and Structure Prediction with Lattice Models;28
4.7;References;29
5;2 Multiscale Protein and Peptide Docking;33
5.1;2.1 Introduction;33
5.2;2.2 Rigid Docking Procedures;35
5.3;2.3 Flexible Docking;35
5.4;2.4 Multiscale Flexible Docking with CABS;36
5.4.1;2.4.1 Treating of Flexibility;38
5.4.2;2.4.2 Example of Peptide Docking to Receptor Protein;39
5.4.3;2.4.3 Protein--Protein Docking;40
5.5;2.5 Perspectives;42
5.6;References;43
6;3 Coarse-Grained Models of Proteins: Theory and Applications;46
6.1;3.1 Introduction;46
6.2;3.2 History of Coarse-Grained Protein Models;48
6.3;3.3 Choice of Conformational Space Representation;54
6.4;3.4 Interaction Schemes;55
6.5;3.5 Derivation of Coarse-Grained Force Fields;56
6.5.1;3.5.1 Basic Formulations;57
6.5.2;3.5.2 Statistical Potentials (Boltzmann Principle);58
6.5.3;3.5.3 Factor Expansion of the PMF;62
6.5.4;3.5.4 Force-Matching Method;66
6.5.5;3.5.5 Optimization of an Effective Energy Function;68
6.5.6;3.5.6 ''Knowledge-Based'' and ''Physics-Based'' Potentials;71
6.6;3.6 Applications in Protein Structure Prediction;72
6.7;3.7 Applications to Study Protein Dynamics and Thermodynamics;75
6.8;3.8 Conclusions and Outlook;81
6.9;References;82
7;4 Conformational Sampling in Structure Prediction and Refinement with Atomistic and Coarse-Grained Models;95
7.1;4.1 Introduction;95
7.2;4.2 Iterative Structure Refinement Framework;97
7.2.1;4.2.1 Quantitative Measure of Sampling Efficiency;98
7.3;4.3 Protein Models at Different Resolutions;100
7.3.1;4.3.1 All-Atom Models of Proteins;100
7.3.1.1;4.3.1.1 Sampling with All-Atom Force Fields;102
7.3.2;4.3.2 Coarse-Grained Models of Proteins;102
7.3.2.1;4.3.2.1 PRIMO;103
7.3.2.2;4.3.2.2 SICHO;108
7.4;4.4 Iterative Refinement with Different Protein Models;110
7.4.1;4.4.1 Sampling Protocol;110
7.4.1.1;4.4.1.1 All-Atom Molecular Dynamics Simulations;111
7.4.1.2;4.4.1.2 PRIMO Molecular Dynamics Simulations;111
7.4.1.3;4.4.1.3 SICHO Lattice Monte Carlo Sampling;111
7.4.2;4.4.2 Refinement Toward the Native State;112
7.5;4.5 Summary and Outlook;115
7.6;References;116
8;5 Effective All-Atom Potentials for Proteins;120
8.1;5.1 Introduction;120
8.2;5.2 Effective Potentials;122
8.3;5.3 Applications;125
8.3.1;5.3.1 Folding Thermodynamics;125
8.3.2;5.3.2 Mechanical Unfolding;128
8.3.3;5.3.3 Aggregation;130
8.4;5.4 Summary;132
8.5;References;132
9;6 Statistical Contact Potentials in Protein Coarse-Grained Modeling: From Pair to Multi-body Potentials;136
9.1;6.1 Introduction;136
9.2;6.2 History of Development of Knowledge-Based Potentials;138
9.2.1;6.2.1 Inverse Boltzmann Relationship;139
9.2.2;6.2.2 Quasi-chemical Approximation;142
9.3;6.3 Distant-Independent Potential Functions;143
9.3.1;6.3.1 Sample Weighing;144
9.4;6.4 Distance-Dependent Potential Functions;146
9.5;6.5 Geometric Potential Functions;148
9.6;6.6 Multi-body Potentials;148
9.6.1;6.6.1 Four-Body Contact Potentials;149
9.6.1.1;6.6.1.1 Construction of Four-Body Contacts;149
9.6.2;6.6.2 Four-Body Contact Potential Energy Function;151
9.7;6.7 Optimization Method;152
9.8;6.8 Comparative Analysis of Statistical Protein Contact Potentials to Infer Ideal Amino Acid Interaction Forms;153
9.9;6.9 Statistical Force Fields for Coarse-Grained Protein Models;155
9.10;6.10 Applications of Knowledge-Based Potential Functions;156
9.11;6.11 Future Developments;158
9.12;References;162
10;7 Bridging the Atomic and Coarse-Grained Descriptions of Collective Motions in Proteins;167
10.1;7.1 Introduction;167
10.2;7.2 Protein Internal Dynamics Observed over Different Timescales: Methods;170
10.2.1;7.2.1 Low-Energy Collective Excitations;171
10.2.2;7.2.2 Structural Substates;171
10.2.3;7.2.3 Inter-substate and Intra-substate Fluctuations;172
10.2.4;7.2.4 Comparison of Structural Fluctuations in Different Substates;173
10.2.5;7.2.5 Coarse-Grained Description and Modeling of Protein Internal Dynamics;174
10.2.5.1;7.2.5.1 Elastic Network Models;174
10.2.5.2;7.2.5.2 Identifying Protein Dynamical Domains;175
10.3;7.3 Protein Internal Dynamics Observed Over Different Timescales: The Case of Adenylate Kinase;175
10.3.1;7.3.1 Conformational Fluctuations in the Presence of a Nearly Flat Free-Energy Landscape: The Case of TAT;182
10.4;7.4 Concluding Remarks;183
10.5;References;184
11;8 Structure-Based Models of Biomolecules: Stretching of Proteins, Dynamics of Knots, Hydrodynamic Effects, and Indentation of Virus Capsids;187
11.1;8.1 Introduction;187
11.2;8.2 The Structure-Based Models of Proteins;191
11.3;8.3 The Structure-Based Models of the DNA and Dendrimers;196
11.4;8.4 Examples of Applications of the Structure-Based Models of Proteins;199
11.4.1;8.4.1 Mechanical Strength of 17,134 Proteins;199
11.4.2;8.4.2 Dynamics of Knots;202
11.4.3;8.4.3 Proteins in Membranes;206
11.4.4;8.4.4 Hydrodynamic Interactions;207
11.4.5;8.4.5 Nanoindentation of Virus Capsids;208
11.5;References;211
12;9 Sampling Protein Energy Landscapes -- The Quest for Efficient Algorithms;217
12.1;9.1 Introduction;217
12.2;9.2 Basic Simulation Techniques;218
12.2.1;9.2.1 Molecular Dynamics;218
12.2.2;9.2.2 Monte Carlo;219
12.2.3;9.2.3 Optimization Techniques;221
12.3;9.3 Advanced Simulation Techniques;222
12.3.1;9.3.1 Unfolding Simulations;222
12.3.2;9.3.2 Advanced Updates;223
12.3.3;9.3.3 Generalized-Ensemble Techniques;224
12.3.3.1;9.3.3.1 Random Walks in Order Parameter Space;225
12.3.3.2;9.3.3.2 Random Walks in Control Parameter Space;228
12.3.3.3;9.3.3.3 Random Walks in Model Space;229
12.3.3.4;9.3.3.4 Optimizing the Efficiency of Generalized-Ensemble Sampling;230
12.4;9.4 Recent Applications;232
12.5;9.5 Conclusion;235
12.6;References;235
13;10 Protein Structure Prediction: From Recognition of Matches with Known Structures to Recombination of Fragments;239
13.1;10.1 Introduction;239
13.2;10.2 Protein Structure Prediction Methods: Classification and Critical Evaluation;240
13.3;10.3 Meta Approaches to Template-Based Prediction;245
13.4;10.4 From Multiple Template-Based Models to Hybrids;247
13.5;10.5 Fragment Assembly: A New Trend in De Novo Protein Structure Prediction;250
13.5.1;10.5.1 De Novo Modeling by Fragment Assembly (and Subsequent Refinement);251
13.5.2;10.5.2 Hybrid Methods Involving Fragment Assembly and Folding Simulations;254
13.5.3;10.5.3 Other Methods Based on Fragment Prediction;255
13.6;10.6 Why Are the Fragments-Assembly Methods So Successful?;256
13.7;10.7 Conclusions and Outlook;257
13.8;References;258
14;11 Genome-Wide Protein Structure Prediction;263
14.1;11.1 Introduction;264
14.2;11.2 Pioneering Efforts in Genome-Scale Structure Predictions;266
14.3;11.3 TASSER Methods;268
14.4;11.4 I-TASSER Methods;269
14.5;11.5 TASSER/I-TASSER Structure Prediction on Large-Scale Benchmarks;272
14.6;11.6 Prediction of All Medium-Sized ORFs in the E. coli Genome;274
14.7;11.7 Structural Modeling of All 907 Putative GPCRs in the Human Genome;275
14.8;11.8 Application of I-TASSER to the Chlamydia trachomatis Genome;280
14.9;11.9 Concluding Remarks;281
14.10;References;282
15;12 Multiscale Approach to Protein Folding Dynamics;288
15.1;12.1 Introduction;288
15.2;12.2 Structural Dynamics from Combination of Experiment and Simulation;289
15.3;12.3 Protein Dynamics by a High-Resolution Reduced Modeling;292
15.3.1;12.3.1 Paradigm Systems of Protein Folding Studies by a High-Resolution De Novo Modeling;292
15.4;12.4 Summary;296
15.5;References;297
16;13 Error Estimation of Template-Based Protein Structure Models;301
16.1;13.1 Introduction;301
16.2;13.2 Overview of Quality Assessment Measures;304
16.2.1;13.2.1 Physics-Based Score;305
16.2.2;13.2.2 Knowledge-Based Potential;305
16.2.3;13.2.3 Assessing Alignment Quality;306
16.3;13.3 The SPAD Score;306
16.3.1;13.3.1 Definition of the SPAD Score;306
16.3.2;13.3.2 Correlation of SPAD to RMSD of Models;308
16.3.3;13.3.3 Correlation to the Local Quality of Models;308
16.4;13.4 Real-Value Quality Assessment of Structure Models;309
16.4.1;13.4.1 Tondel's Method;309
16.4.2;13.4.2 ProQ;310
16.4.3;13.4.3 TVSMod;310
16.4.4;13.4.4 The SubAqua Method;311
16.4.4.1;13.4.4.1 Correlation of Quality Assessment Terms to RMSD;311
16.4.4.2;13.4.4.2 Variable Selection for Constructing Regression Models;312
16.4.4.3;13.4.4.3 Two-Step Procedure to Predict Local Quality;315
16.5;13.5 Summary;316
16.6;References;317
17;14 Evaluation of Protein Structure Prediction Methods: Issues and Strategies;321
17.1;14.1 Introduction;321
17.2;14.2 Numerical Evaluation of Model Quality;324
17.3;14.3 The Identification of Successful Strategies;327
17.4;14.4 Recognition of Progress in Protein Structure Prediction;329
17.5;14.5 A Priori Estimates of Model Quality;332
17.6;14.6 Applications of Protein Models to Biomedical Research;335
17.7;14.7 Conclusions and Outlook;339
17.8;References;340
18;Index;346



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.