Buch, Englisch, 452 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 842 g
Microbial Biosynthesis and Feedstocks
Buch, Englisch, 452 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 842 g
ISBN: 978-0-367-27559-4
Verlag: CRC Press
The first volume of the "Handbook of Polyhydroxyalkanoates (PHA): Microbial Biosynthesis and Feedstocks" focusses on feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book
Covers the intracellular on-goings in PHA-accumulating bacteria
Assesses diverse feedstocks to be used as carbon source for PHA production including current knowledge on PHA biosynthesis starting from inexpensive waste feedstocks
Summarizes recent relevant results dealing with PHA production from various organic by-products
Presents the key elements to understand and fine-tune the microstructure and sequence-controlled molecular architecture of PHA co-polyesters
Discusses the use of CO-rich syngas, sourced from various organic waste materials, for PHA biosynthesis
Zielgruppe
Postgraduate and Professional
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Verfahrenstechnik, Chemieingenieurwesen
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie Medizinische Biotechnologie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
Weitere Infos & Material
1. Monomer-Supplying Enzymes for Polyhydroxyalkanoate Biosynthesis. 2. PHA Granule-Associated Proteins and their Diverse Functions. 3. Genomics of PHA Synthesizing Bacteria. 4. Molecular Basis of Medium-Chain Length-PHA Metabolism of Pseudomonas putida. 5. Production of Polyhydroxyalkanoates by Paraburkholderia and Burkholderia species: A Journey from the Genes through Metabolic Routes to their Biotechnological Applications. 6. Genetic Engineering as a Tool for Enhanced PHA Biosynthesis from Inexpensive Substrates. 7. Biosynthesis and Sequence Control of scl-PHA and mcl-PHA. 8. Inexpensive and Waste Raw Materials for PHA Production. 9. Sustainable Production of Polyhydroxyalkanoates from Crude Glycerol. 10. Biosynthesis of Polyhydroxyalkanoates (PHA) from Vegetable Oils and its By-products by Wild-Type and Recombinant Microbes. 11. Production and Modification of PHA Polymers Produced from Long-Chain Fatty Acid. 12. Converting Petrochemical Plastic to Biodegradable Plastic. 13. Comparing Heterotrophic with Phototrophic PHA Production - Concurring or Complementing Strategies?. 14. Coupling Biogas (CH4) with PHA Biosynthesis. 15. Syngas as a Sustainable Carbon Source for PHA Production.