Koshida | Device Applications of Silicon Nanocrystals and Nanostructures | E-Book | www.sack.de
E-Book

E-Book, Englisch, 344 Seiten

Reihe: Nanostructure Science and Technology

Koshida Device Applications of Silicon Nanocrystals and Nanostructures


1. Auflage 2008
ISBN: 978-0-387-78689-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 344 Seiten

Reihe: Nanostructure Science and Technology

ISBN: 978-0-387-78689-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

Koshida Device Applications of Silicon Nanocrystals and Nanostructures jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Foreword;6
2;Preface;8
3;Acknowledgements;10
4;Contents;11
5;Si-Rich Dielectrics for Active Photonic Devices;13
5.1;1. Introduction;13
5.2;2. Nucleation and Structural Properties of Si Nanocrystals;15
5.3;3. Optical Properties of Si Nanocrystals;18
5.3.1;3.1. Si Nanocrystal Emission;19
5.3.2;3.2. Emission Sensitization Through Energy Transfer from Si-Rich Dielectrics;23
5.3.2.1;3.2.1. Er;23
5.3.2.2;3.2.2. PbS Quantum Dots [66];26
5.4;4. Devices;27
5.4.1;4.1. Si-Rich Nitride Light Emitting Diodes;28
5.4.2;4.2. Si-Rich Nitride Light Emitting Complex Photonic Structures;30
5.5;5. Outlook;32
5.6;References;33
6;Nanocrystalline Si EL Devices;37
6.1;1. Introduction;37
6.2;2. El of Porous Silicon;38
6.2.1;2.1. Formation and Properties of Porous Si;38
6.2.2;2.2. Porous Si Impregnated by an Electrolyte;39
6.2.3;2.3. Transport and EL Mechanism in Wet and Dry Porous Si;40
6.2.4;2.4. Devices Including As-Formed Porous Si;40
6.2.5;2.5. Porosified pn Junctions;41
6.2.6;2.6. Partially Oxidized Porous Si;43
6.2.7;2.7. Porous Si Impregnated by Another Material;46
6.2.8;2.8. Influence of the Top Contact Configuration;48
6.2.9;2.9. Stabilization of Porous Si EL by Layer Capping or Surface Modification;50
6.2.10;2.10. Microcavities;52
6.2.11;2.11. EL Modulation Speed;53
6.2.12;2.12. Integration;54
6.3;3. El Based on Ballistic Electron Excitation;55
6.3.1;3.1. Electron Emission from Porous Si and Its Mechanism;55
6.3.2;3.2. Optimization of the Electron Emission from Porous Si;55
6.3.3;3.3. Ballistic Electron Surface-Emitting Display on Glass Substrate;56
6.3.4;3.4. Solid-State Planar Luminescent Devices;57
6.4;4. Si Nanocrystals Surrounded By Si Oxide;58
6.4.1;4.1. Fabrication, Photoluminescence, and Introduction to EL;58
6.4.2;4.2. Si-Implanted Si Oxide;60
6.4.3;4.3. Annealed Substoichiometric Si Oxide;63
6.4.4;4.4. nc-Si Single Layer Sandwiched Between Two SiO2 Layers;63
6.5;5 Other Single Layer Nanostructures;66
6.5.1;5.1 nc-Si Embedded in SiNx;66
6.5.2;5.2 Other Low-Dimensional Si Structures;66
6.5.3;5.3. Confinement Induced by Local Strain or Doping Fluctuations;69
6.6;6. Superlattices;70
6.6.1;6.1. Superlattices Based on SiOx Layers;70
6.6.2;6.2. Superlattices Based on SiNx or CaF2 Layers;73
6.7;7. El From Rare Earth-Doped Si Nanoclusters;73
6.8;8. Conclusion;76
6.9;References;77
7;Surface and Superlattice;83
7.1;1. Introduction;83
7.2;2. Fabrication Methods;85
7.2.1;2.1. Molecular Beam Epitaxy;85
7.2.2;2.2. Magnetron Sputtering;85
7.2.3;2.3. Electron Beam Deposition;86
7.2.4;2.4. Plasma-Enhanced Chemical Vapour Deposition;86
7.2.5;2.5. Thermal Reactive Evaporation;87
7.2.6;2.6. Low-Pressure Chemical Vapor Deposition and Atmospheric Pressure Chemical Vapor Deposition;87
7.3;3. Deposition Parameters;87
7.3.1;3.1. Substrate Temperature;87
7.3.2;3.2. Base Vacuum and Gas Partial Pressure;88
7.3.3;3.3. Postannealing Treatment;89
7.4;4. Characterization;91
7.4.1;4.1. Theoretical Analysis;91
7.4.2;4.2. Experimental Analysis;92
7.4.2.1;4.2.1. Electron Microscopy;92
7.4.2.2;4.2.2. X-Ray Diffraction and Reflectivity;93
7.4.2.3;4.2.3 . Optical Absorption Spectroscopy;93
7.4.2.4;4.2.4. Vibrational Spectroscopies: Raman and FTIR;94
7.4.2.4.1;Raman Spectroscopy;94
7.4.2.4.2;Infrared Spectroscopy;96
7.4.2.5;4.2.5. Other Techniques;97
7.5;5. Optical Properties of Si/Sio2 Superlattices;98
7.5.1;5.1. Photoluminescence;98
7.5.2;5.2. Electroluminescence;100
7.6;6. Optical Properties of Rare-Earth Doped Silicon Nanostructures;101
7.6.1;6.1. Silicon Resonating Quantum Structures;101
7.6.2;6.2. Si/SiO2 Superlattices;103
7.6.3;6.3. Miscellaneous;107
7.7;7. Other Silicon-Based Superlattices;107
7.7.1;7.1. Si/CaF2 SLs;107
7.7.2;7.2. Si/SiNx SLs;108
7.8;8. Conclusions;110
7.9;References;111
8;Optical Gain and Lasing in Low Dimensional Silicon: The Quest for an Injection Laser;115
8.1;1. Basic on Light Amplification and Gain;116
8.2;2. Limitation of Silicon For Light Amplification;119
8.3;3. Optical Gain in Silicon Nanocrystals;121
8.4;4. Light Amplification in Er Coupled to Si Nanoclusters;127
8.5;5. Optical Gain in Nanostructured Silicon;131
8.5.1;5.1. Stimulated Emission by Nanocavities in Silicon;131
8.5.2;5.2. Stimulated Emission by Dye Impregnation in Nanoporous Oxidized Silicon;132
8.6;6. Conclusions;133
8.7;References;134
9;Silicon Single-Electron Devices;136
9.1;1. Introduction;136
9.2;2. Operating Principle of Single-Electron Devices;137
9.3;3. Fabrication of Silicon Single-Electron Devices;140
9.4;4. Single-Electron Memory;149
9.4.1;4.1. Multi-Nanodot Memory;149
9.4.2;4.2. Memories Using a Single-Electron Transistor as a Sensing Device;151
9.4.3;4.3. Multiple-Value Memories Using a Single-Electron Transistor;153
9.5;5. Single-Electron Logic;157
9.5.1;5.1. SET-Based Logic;158
9.5.2;5.2. Multigate SET and Pass Transistor Logic;163
9.5.3;5.3. Multiple-Valued Logics;165
9.5.4;5.4. Logic Applications Using Negative-Differential Conductance;166
9.6;6. Single-Electron Transfer and Single-Electron Detection;167
9.6.1;6.1. Development of Single-Charge Transfer Device;168
9.6.2;6.2. Si-Based Single-Charge Transfer Devices;171
9.6.3;6.3. Single-Electron Detection;177
9.7;References;180
10;Room Temperature Silicon Spin-Based Transistors;184
10.1;1. Introduction;184
10.2;2. Spin-Based Transistors: The Early History;185
10.3;3. The Spin-Valve Transistor;187
10.4;4. The Spin Diffusion Transistor;191
10.5;5. Spin-Mosfets;196
10.6;6. Outlook;205
10.7;References;205
11;Electron Transport in Nanocrystalline Silicon;208
11.1;1. Introduction to Electron Transport in Nanocrystalline Silicon;208
11.2;2. Electron Transport in Nanoscale Nc-Si Structures;211
11.2.1;2.1. Coulomb Blockade;211
11.2.2;2.2. Resonant Tunneling;214
11.2.3;2.3. Electron Interaction in Strongly Coupled Double Nc-Si Dots;216
11.3;3. Phononic States and Ballistic Electron Transport in Periodic Nc-Si Structures;219
11.3.1;3.1. Electronic States in One-Dimensional Si Nanodot Arrays (1DSiNDA) Interconnected with Thin Oxide Layers;220
11.3.2;3.2. Phononic States and Reduction of Acoustic Phonon Scattering Potential due to Phonon Modulation;222
11.3.3;3.3 Intra- and Inter-Miniband Scattering;226
11.3.4;3.4 Ballistic Electron Emission from Si Nanodot Array Structures;229
11.4;References;231
12;Silicon Nanocrystal Nonvolatile Memories;233
12.1;1. Introduction;233
12.2;2. Traditional Nonvolatile Memory Scaling;234
12.3;3. Silicon Nanocrystal Memories and Ideal Nanocrystal Properties;236
12.4;4. Direct Tunneling Memories;239
12.5;5. Hci Programming/Fowler-Nordheim Erase Si Nanocrystal Memories;243
12.6;6. Silicon Nanocrystal Deposition Processes;247
12.7;7 Effects of Nanocrystal Fluctuations;252
12.8;8 Memory Array Results;256
12.9;9 Summary;258
12.10;References;258
13;Nanocrystalline Silicon Ballistic Electron Emitter;260
13.1;1. Introduction;261
13.2;2. Fabrication and Basic Characteristics of the Bsd;261
13.2.1;2.1. BSD on Silicon Wafers;261
13.2.2;2.2. BSD on Glass Substrates;262
13.2.3;2.3. Measurements and Analyses;262
13.2.4;2.4. Emission Characteristics of the BSD;264
13.2.5;2.5. Energy Distribution of Emitted Electrons;266
13.2.6;2.6. Emission Uniformity and Angular Dispersion;267
13.3;3. Ballistic Emission Model;268
13.4;4. Correlation Between Nanostructures and Emission Performance;271
13.4.1;4.1. Nanocrystallisation of LPCVD-Deposited Polysilicon;271
13.4.2;4.2. Ballistic Transport Channel in the NPS Layer;272
13.4.3;4.3. Optical Characterisation of Silicon Nanostructures;274
13.5;5. Optimisation of Process and Device Parameters;277
13.5.1;5.1. Low-Temperature Processing;277
13.5.2;5.2. Analysis of Annealing Effect on Electrochemically Treated NPS by TDS;278
13.5.3;5.3. Analysis of ECO-Treated nc-Si by TEM;282
13.5.4;5.4. Existence of nc-Si and Electron Emission Characteristics;285
13.6;6. Effects of Surface Electrode on Electron Emission;290
13.6.1;6.1. Effect of UV/O3 Treatment in Electron Emission Efficiency;290
13.6.2;6.2. Effect of Carbon Layer on Heat Durability;293
13.7;7. Fabricated Bsd Model;294
13.8;8. Conclusions;299
13.9;References;300
14;Porous Silicon Optical Label-Free Biosensors;301
14.1;1. Background;301
14.1.1;1.1. The Need for Label-Free Biosensors;301
14.1.2;1.2. Material Science of Porous Silicon;303
14.1.3;1.3. Porous Silicon for Label-Free Biosensing: Principle, Advantages, and Achievement;305
14.2;2. Porous Silicon Photonic Bandgap Structure Biosensors: Design and Fabrication;307
14.2.1;2.1. Introduction to Photonic Bandgap Structures;307
14.2.2.1;2.2.2. Microcavity;309
14.2.2.2;2.2.3. Rugate Filter;310
14.2.3;2.3. Sensitivity of Porous Silicon Optical Sensors;310
14.2.3.1;2.3.1. Sensitivity Definition;310
14.2.3.2;2.3.2. Porous Silicon Single Layer Biosensor;311
14.2.3.3;2.3.3. Rugate Filter Biosensor;312
14.2.3.4;2.3.4. Microcavity Biosensor;313
14.2.4;2.4. Advantages of Porous Silicon PBG Microcavity Structures in Sensing Applications;313
14.2.5;2.5. Design of Porous Silicon 1-D PBG Microcavity Biosensors;314
14.2.5.1;2.5.1. Q-Factor;314
14.2.5.2;2.5.2. Influence of the Pore Size and Nanomorpholgy on Sensitivity;316
14.2.6;2.6. Fabrication of Porous Silicon One-Dimensional Photonic Bandgap Microcavities;318
14.3;3. Quantitative Detection Using Porous Silicon Microcavity Sensors;318
14.4;4. Biosensing Applications;321
14.4.1;4.1. DNA Detection;321
14.4.2;4.2. Gram Negative Bacteria Detection;322
14.4.3;4.3. Protein Sensing;323
14.4.4;4.4. IgG Sensor;324
14.4.5;4.5. Protein Sensor for Pathogenic E. coli Detection;325
14.5;5. Conclusions;328
14.6;References;329
15;Ultrasonic Emission from Nanocrystalline Porous Silicon;332
15.1;1. Introduction;332
15.2;2. Theoretical Bases of Sound Generation;333
15.3;3. Comparison with other Devices;336
15.4;4. Examples of Applications;338
15.5;5. Summary and Technological Perspective;340
15.6;References;341
16;Index;343



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.