E-Book, Englisch, 279 Seiten, eBook
Reihe: Physics and Astronomy
Krishnan / Kodamana / Bhattoo Machine Learning for Materials Discovery
1. Auflage 2024
ISBN: 978-3-031-44622-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Numerical Recipes and Practical Applications
E-Book, Englisch, 279 Seiten, eBook
Reihe: Physics and Astronomy
ISBN: 978-3-031-44622-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Focusing on the fundamentals of machine learning, this book covers broad areas of data-driven modeling, ranging from simple regression to advanced machine learning and optimization methods for applications in materials modeling and discovery. The book explains complex mathematical concepts in a lucid manner to ensure that readers from different materials domains are able to use these techniques successfully. A unique feature of this book is its hands-on aspect—each method presented herein is accompanied by a code that implements the method in open-source platforms such as Python. This book is thus aimed at graduate students, researchers, and engineers to enable the use of data-driven methods for understanding and accelerating the discovery of novel materials.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part I: Introduction
1. Introduction
a. What are glasses
b. Types of glasses
c. Properties of glassesd. Need for data-based modeling
e. Some examples of data-based modeling
Part II: Basics of Machine learning methods
2. Introduction to data-based modeling
a. Introduction
b. Data-based modeling vs. physics-based modeling
c. Modeling and simulationd. Dataset preparation: Outlier detection, imputing missing data
e. Dataset visualization
f. Common measures of the data: mean, variance, and other measures
g. Higher-order measures: skewness and non-gaussian parameter
h. Summary
3. Model development
a. Introduction
b. Ordinary Linear regressionc. Lasso, Ridge, Elastic Net
d. Gradient boost
e. Least Angle Regression
f. Polynomial regression
4. Introduction to machine learninga. Supervised vs. unsupervised learning
b. Classification vs. regression
c. Classification methods:
1> Support vector machine
2> Random forestd. Regression methods:
1> SVM
2> Random forest
3> Neural network
e. Summary5. Quick dive into probabilistic methods
a. Introduction
b. What is probability
c. Central limit theorem
d. Probability modelse. Gaussian Process Regression
6. Optimization
a. Introduction
b. Convex optimization
c. Steepest decentd. Conjugate Gradient
e. Newton’s, Broyden–Fletcher–Goldfarb–Shanno (BFGS), Davidon–Fletcher–Powell (DFP) methods
f. Bayesian OptimizationPart III: Application in glass science
7. Property predictiona. Introduction
b. Regression
c. Case studies
d. Common pitfalls
1> Inadequate data2> Truncation
3> Overfitting
e. Summary
8. Glass discovery
a. Introductionb. Optimization: GA, Bayesian Optimization
c. Glass design chart
d. Case studies
e. Common pitfalls
1> Poor extrapolation2> Problems of non-convexity
3> Convergence
f. Summary
9. Understanding glass physics
a. Introductionb. Glass transition
c. Composition dependent property
d. Glass formability
e. Common pitfalls
f. Summary10. Atomistic modeling
a. Introduction
b. Development of interatomic potentials
c. Predicting glass structures — MPNN
d. Graph mining
e. Summary
11. Future directions




