Kulkarni | Reverse Hypothesis Machine Learning | Buch | 978-3-319-85626-1 | sack.de

Buch, Englisch, Band 128, 138 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 2467 g

Reihe: Intelligent Systems Reference Library

Kulkarni

Reverse Hypothesis Machine Learning

A Practitioner's Perspective
Softcover Nachdruck of the original 1. Auflage 2017
ISBN: 978-3-319-85626-1
Verlag: Springer International Publishing

A Practitioner's Perspective

Buch, Englisch, Band 128, 138 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 2467 g

Reihe: Intelligent Systems Reference Library

ISBN: 978-3-319-85626-1
Verlag: Springer International Publishing


This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. Knowledge- acquisition -based learning is constrained by large volumes of data and is time consuming. Hence Knowledge innovation based learning is the need of time. Since under-learning results in cognitive inabilities and over-learning compromises freedom, there is need for optimal machine learning. All existing learning techniques rely on mapping input and output and establishing mathematical relationships between them. Though methods change the paradigm remains the same—the forward hypothesis machine paradigm, which tries to minimize uncertainty. The RHM, on the other hand, makes use of uncertainty for creative learning. The approach uses limited data to help identify new and surprising solutions. It focuses on improving learnability, unlike traditional approaches, which focus on accuracy. The book is useful as a reference book for machine learning researchers and professionals as well as machine intelligence enthusiasts. It can also used by practitioners to develop new machine learning applications to solve problems that require creativity.
Kulkarni Reverse Hypothesis Machine Learning jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Pattern Apart.- Understanding Machine Learning Opportunities.- Systemic Machine Learning.- Reinforcement and Deep Reinforcement Machine Learning.- Creative Machine Learning.- Co-operative and Collective learning for Creative Machine Learning.- Building Creative Machines with Optimal Machine Learning and Creative Machine Learning Applications.- Conclusion – Learning Continues



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.