E-Book, Englisch, 292 Seiten
Kundu Classical and Quantum Nonlinear Integrable Systems
1. Auflage 2010
ISBN: 978-1-4200-3461-5
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Theory and Application
E-Book, Englisch, 292 Seiten
ISBN: 978-1-4200-3461-5
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Covering both classical and quantum models, nonlinear integrable systems are of considerable theoretical and practical interest, with applications over a wide range of topics, including water waves, pin models, nonlinear optics, correlated electron systems, plasma physics, and reaction-diffusion processes. Comprising one part on classical theories and applications and another on quantum aspects, Classical and Quantum Nonlinear Integrable Systems: Theory and Application reviews the advances made in nonlinear integrable systems, with emphasis on the underlying concepts rather than technical details. It forms an outstanding introductory textbook as well as a useful reference for specialists.
Zielgruppe
Advanced graduate students and researchers in mathematical physics and applied mathematics
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface (A Kundu) A Journey Through the KdV Equation (M Lakshmanan) The Painleve methods (R Conte and M Musette) Discrete Integrability (K M Tamizhmani, A Ramani, B Grammaticos and T Tamizhmani) The D-BAR Method: A Tool for Solving Two-Dimensional Integrable Evolution PDEs (A S Fokas) Introduction to Solvable Lattice Models in Statistical and Mathematical Physics (T Deguchi)II. QUANTUM SYSTEMS Unifying Approaches in Integrable Systems: Quantum and Statistical, Ultralocal and Nonultralocal (A Kundu) The Physical Basis of Integrable Spin Models (I Bose) Exact Solvability in Contemporary Physics (A Foerster, J Links and H-Q Zhou) The Thermodynamics of the spin-1/2 XXX Chain: Free Energy and Low-temperature Singularities of Correlation Lengths (A Klümper and C Scheeren) Reaction-Diffusion Processes and Their Connection with Integrable Quantum Spin Chains (M Henkel)