Kundu / Cohen / Dowling | Fluid Mechanics | E-Book | sack.de
E-Book

E-Book, Englisch, 928 Seiten

Kundu / Cohen / Dowling Fluid Mechanics


6. Auflage 2015
ISBN: 978-0-12-407151-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 928 Seiten

ISBN: 978-0-12-407151-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The classic textbook on fluid mechanics is revised and updated by Dr. David Dowling to better illustrate this important subject for modern students. With topics and concepts presented in a clear and accessible way, Fluid Mechanics guides students from the fundamentals to the analysis and application of fluid mechanics, including compressible flow and such diverse applications as aerodynamics and geophysical fluid mechanics. Its broad and deep coverage is ideal for both a first or second course in fluid dynamics at the graduate or advanced undergraduate level, and is well-suited to the needs of modern scientists, engineers, mathematicians, and others seeking fluid mechanics knowledge. - Over 100 new examples designed to illustrate the application of the various concepts and equations featured in the text - A completely new chapter on computational fluid dynamics (CFD) authored by Prof. Gretar Tryggvason of the University of Notre Dame. This new CFD chapter includes sample MatlabTM codes and 20 exercises - New material on elementary kinetic theory, non-Newtonian constitutive relationships, internal and external rough-wall turbulent flows, Reynolds-stress closure models, acoustic source terms, and unsteady one-dimensional gas dynamics - Plus 110 new exercises and nearly 100 new figures

Formerly Nova University, USA

Kundu / Cohen / Dowling Fluid Mechanics jetzt bestellen!

Weitere Infos & Material


Nomenclature
Notation (Relevant Equation Numbers Appear in Parentheses)
¯= principle-axis version of f, background or quiescent-fluid value of f, or average or ensemble average of f , Darcy friction factor (12.101, 12.102) ˆ = complex amplitude of f ˜ = full field value of f ' = derivative of f with respect to its argument, or perturbation of f from its reference state * = complex conjugate of f, or the value of f at the sonic condition f+ = the dimensionless, law-of-the-wall value of f f? = ?f/?? (6.105) fcr = critical value of f fav = average value of f fCL = centerline value of f fj = the jth component of the vector f, f at location j (6.14) )in, in = f at time n at horizontal x-location j (6.13) fij = the i-j component of the second order tensor f i,jn, )i,jn = f at time n at horizontal x-location i and vertical y-location j (6.52, Fig. 6.10) fR = rough-wall value of f fS = smooth-wall value of f f0 = reference, surface, or stagnation value of f f8 = reference value of f or value of f far away from the point of interest ?f = change in f Symbols (Relevant Equation Numbers Appear in Parentheses)
a = contact angle (Fig. 1.8), thermal expansion coefficient (1.26), angle of rotation, iteration number (6.57), angle of attack (Fig. 14.6) a = triangular area, cylinder radius, sphere radius, amplitude a = generic vector, Lagrangian acceleration (3.1) A = generic second-order (or higher) tensor A, A = a constant, an amplitude, area, surface, surface of a material volume, planform area of a wing A* = control surface, sonic throat area Ao = Avogadro’s number A0 = reference area Aij = representative second-order tensor ß = angle of rotation, coefficient of density change due to salinity or other constituent, convergence acceleration parameter (6.57), variation of the Coriolis frequency with latitude (13.10), camber parameter (Fig. 14.13) b = generic vector, control surface velocity (Fig. 3.20) B, B = a constant, Bernoulli function (4.70), log-law intercept parameter (12.88) B, Bij = generic second-order (or higher) tensor Bo = Bond number (4.118) c = speed of sound (1.25, 15.1h), phase speed (8.4), chord length (14.2Figs. 14.2, 14.6) c = phase velocity vector (8.8) cg, cg = group velocity magnitude (8.67) and vector (8.141) ? = scalar stream function (Fig. 4.1) °C = degrees centigrade C = a generic constant, hypotenuse length, closed contour Ca = Capillary number (4.119) Cf = skin friction coefficient (10.15, 10.32) Cp = pressure (coefficient) (4.106, 7.32) cp = specific heat capacity at constant pressure (1.20) CD = coefficient of drag (4.107, 10.33) CL = coefficient of lift (4.108) cv = specific heat capacity at constant volume (1.21) Cij = matrix of direction cosines between original and rotated coordinate system axes (2.5) C± = Characteristic curves along which the I± invariants are constant (15.57) d = diameter, distance, fluid layer depth d = dipole strength vector (7.28), displacement vector d = Dirac delta function (B.4.1), similarity-variable length scale (9.32), boundary-layer thickness, generic length scale, small increment, flow deflection angle (15.64) ¯ = average boundary-layer thickness d* = boundary-layer displacement thickness (10.16) dij = Kronecker delta function (2.16) d99 = 99% layer thickness D = distance, drag force, diffusion coefficient (6.10) D = drag force vector (Example 14.1) Di = lift-induced drag (14.15) D/Dt = material derivative (3.4), (3.5), or (B.1.4) DT = turbulent diffusivity of particles (12.156) = generalized field derivative (2.31) e = roughness height, kinetic energy dissipation rate (4.58), a small distance, fineness ratio h/L (9.14), downwash angle (14.14) ¯ = average dissipation rate of the turbulent kinetic energy (12.47) ¯T = average dissipation rate of the variance of temperature fluctuations (12.141) eijk = alternating tensor (2.18) e = internal energy per unit mass (1.16) ei = unit vector in the i-direction (2.1) ¯ = average kinetic energy of turbulent fluctuations (12.47) Ec = Eckert number (4.115) Ek = kinetic energy per unit horizontal area (8.39) Ep = potential energy per unit horizontal area (8.41) E = numerical error (6.21), average energy per unit horizontal area (13.18) ¯ = kinetic energy of the average flow (12.46) EF = time average energy flux per unit length of wave crest (8.43) f = generic function, Maxwell distribution function (1.1) and (1.4), Helmholtz free energy per unit mass, longitudinal correlation coefficient (12.38), Coriolis frequency (13.6), dimensionless friction parameter (15.45) ¯ = Darcy friction factor (12.101, 12.102) fi = unsteady body force distribution (15.5) ? = velocity potential (7.10), an angle f = surface force vector per unit area (2.15, 4.13) F = force magnitude, generic flow field property, generic flux, generic or profile function Ff = perimeter friction force (15.25) F = force vector, average wave energy flux vector (8.157) F = body force potential (4.18), undetermined spectrum function (12.53) FD, ¯D = drag force (4.107), average drag force FL = lift force (4.108) Fr = Froude number (4.104) ? = ratio of specific heats (1.30), velocity gradient, vortex sheet strength,...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.