Kunitomo / Sato / Kurisu | Separating Information Maximum Likelihood Method for High-Frequency Financial Data | Buch | 978-4-431-55928-3 | sack.de

Buch, Englisch, 114 Seiten, Format (B × H): 158 mm x 236 mm, Gewicht: 213 g

Reihe: SpringerBriefs in Statistics

Kunitomo / Sato / Kurisu

Separating Information Maximum Likelihood Method for High-Frequency Financial Data


2018. Auflage 2018
ISBN: 978-4-431-55928-3
Verlag: Springer Japan

Buch, Englisch, 114 Seiten, Format (B × H): 158 mm x 236 mm, Gewicht: 213 g

Reihe: SpringerBriefs in Statistics

ISBN: 978-4-431-55928-3
Verlag: Springer Japan


This book presents a systematic explanation of the SIML (Separating Information Maximum Likelihood) method, a new approach to financial econometrics.
Considerable interest has been given to the estimation problem of integrated volatility and covariance by using high-frequency financial data. Although several new statistical estimation procedures have been proposed, each method has some desirable properties along with some shortcomings that call for improvement. For estimating integrated volatility, covariance, and the related statistics by using high-frequency financial data, the SIML method has been developed by Kunitomo and Sato to deal with possible micro-market noises.
The authors show that the SIML estimator has reasonable finite sample properties as well as asymptotic properties in the standard cases. It is also shown that the SIML estimator has robust properties in the sense that it is consistent and asymptotically normal in the stable convergence sense when there are micro-market noises, micro-market (non-linear) adjustments, and round-off errors with the underlying (continuous time) stochastic process. Simulation results are reported in a systematic way as are some applications of the SIML method to the Nikkei-225 index, derived from the major stock index in Japan and the Japanese financial sector.
Kunitomo / Sato / Kurisu Separating Information Maximum Likelihood Method for High-Frequency Financial Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Introduction.- 2. High-Frequency Financial Data and Statistical Problems.- 3. The SIML method.- 4. Asymptotic Properties.- 5. Simulation and Finite Sample Properties.- 6. Asymptotic Robustness.- 7. Two Dimension Applications.- 8. Concluding Remarks.- 9. References.


Naoto Kunitomo, Meiji University

Seisho Sato, The University of Tokyo

Daisuke Kurisu, Tokyo Institute of Technology



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.