E-Book, Englisch, 593 Seiten, eBook
Kuzmann / Lázár ISIAME 2008
1. Auflage 2009
ISBN: 978-3-642-01370-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the International Symposium on the Industrial Applications of the Mössbauer Effect (ISIAME 2008) held in Budapest, Hungary, 17-22 August 2008
E-Book, Englisch, 593 Seiten, eBook
ISBN: 978-3-642-01370-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the International Symposium on the Industrial Applications of the Mössbauer Effect (ISIAME 2008) held in Budapest, Hungary, 17-22 August 2008
E. Kuzmann and K. Lázár (Eds.)
This book provides an excellent overview on the most recent results on the industrial applications of Mössbauer spectroscopy attained on the fields of nanotechnology, metallurgy, biotechnology and pharmaceutical industry, applied mineralogy, energy production industry (coal, oil, nuclear, solar, etc.), computer industry, space technology, electronic and magnetic devices technology, ion implantation technology, including topics like characterization of novel construction materials, electronic components and magnetic materials, composite materials, colloids, amorphous and nanophase materials, small particles, coatings, interfaces, thin films and multilayers, catalysis, corrosion, tribology, surface modification, hydrogen storage, ball milling, radiation effects, electrochemistry, batteries, etc. From the various reports a broad overview emerges illustrating that the method can successfully be applied in a wide variety of topics.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;2
2;Mössbauer spectroscopy in molecular magnetism;4
2.1;1 Introduction;5
2.2;2 Bimetallic oxalate: magnetic interactions and spin glass state;6
2.3;3 Prussian Blue analog;7
2.4;4 Spin transition materials;10
2.5;5 Conclusion;18
2.6;References;18
3;Monitoring by Mössbauer spectroscopy the thermal reduction of hematite into magnetite: the surface effect and charge disproportionality in iron oxide nanoparticles;21
3.1;1 Introduction;22
3.2;3 Results and discussion;23
3.3;4 Conclusion;28
3.4;References;29
4;Iron in the brain;30
4.1;1 Introduction;30
4.2;2 Material and methods;31
4.3;3 Results and discussion;32
4.4;References;35
5;Analysis of powder particles of high carbon cast iron after air plasma spraying;37
5.1;1 Introduction;37
5.2;3 Results and discussion;39
5.3;4 Conclusions;42
5.4;References;42
6;Ion bombardment of Fe-based amorphous metallic alloys;43
6.1;1 Introduction;44
6.2;2 Experimental details;44
6.3;3 Results and discussion;45
6.4;4 Irradiation with gold;47
6.5;5 Conclusions;49
7;Sigma phase—one of the main reasons for deterioration of stainless steels properties;51
7.1;1 Introduction;51
7.2;2 Identification of the s-phase and kinetics of its formation;52
7.3;3 Determination of the Debye temperature;53
7.4;4 Determination of the Curie temperature;56
7.5;5 Summary;58
7.6;References;59
8;Chemical aspects of lifetime extension at Paks Nuclear Power Plant;60
8.1;1 The purpose and the function of the primary and secondary water regime;61
8.2;2 Analysis of the primary and secondary water regime currently applied for the Paks Units;61
8.3;3 Recommendations;64
8.4;References;68
9;Magnetic phase transitions in nanoclusters and nanostructures;69
9.1;1 Introduction;69
9.2;2 Isolated iron oxide nanoclusters;70
9.3;3 Iron oxide nanostructures in the beginning of sintering;71
9.4;4 Nanostructures induced by shear stress under high pressure action;75
9.5;5 Ordered cluster nanostructures based on iron oxides;77
9.6;6 Conclusions;79
9.7;References;80
10;Effect of particle size and alloying with different metals on Fe Mössbauer spectra;81
10.1;1 Introduction;81
10.2;2 Experimental;83
10.3;3 Results and discussion;84
10.4;4 Conclusion;90
10.5;References;90
11;Characterization of magnetic iron oxide nanoparticles;92
11.1;1 Introduction;92
11.2;2 Experimental;93
11.3;3 Results and discussion;96
11.4;4 Conclusions;97
11.5;References;98
12;Formation of graphite encapsulated iron nanoparticles during mechanical activation and annealing analyzed by Mössbauer spectroscopy;99
12.1;1 Introduction;99
12.2;2 Experimental;100
12.3;3 Results and discussion;100
12.4;4 Conclusion;104
12.5;References;104
13;Hydrogenation of FeCoZr–Al2O3 nanocomposites studied by Mössbauer spectroscopy and magnetometry;105
13.1;1 Introduction;105
13.2;2 Experimental;106
13.3;3 Results and discussion;106
13.4;4 Conclusions;111
13.5;References;111
14;Mössbauer study of rapidly solidified Al-Fe based amorphous alloys;112
14.1;1 Introduction;112
14.2;2 Experimental;113
14.3;3 Results and discussions;113
14.4;4 Conclusions;115
14.5;References;116
15;Integral low-energy electron Mössbauer spectroscopic studies of the surfaces of carbon nanotube-nanocomposite powders;117
15.1;1 Introduction;117
15.2;2 Experimental;119
15.3;3 Results and discussion;120
15.4;References;122
16;Microwave absorption and Mössbauer studies of FeO nanoparticles;123
16.1;1 Introduction;123
16.2;2 Experiment;124
16.3;3 Results and discussion;124
16.4;4 Conclusions;127
16.5;References;127
17;Studies of oxidation of iron nanowires encased in porous aluminium oxide template;129
17.1;1 Introduction;129
17.2;2 Experimental details;130
17.3;3 Results and discussion;131
17.4;4 Conclusions;133
17.5;References;134
18;Influence of Mn-for-Fe substitution on structural properties of synthetic goethite;135
18.1;1 Introduction;135
18.2;2 Experimental;136
18.3;3 Results and discussion;137
18.4;4 Conclusion;141
18.5;References;141
19;Synthesis and magnetic properties of Cu0.5Ni0.5Fe2O4 nanoparticles produced by glycothermal and hydrothermal processes;142
19.1;1 Introduction;142
19.2;2 Experimental;143
19.3;3 Results and discussions;145
19.4;4 Conclusions;149
19.5;References;149
20;Mössbauer spectroscopy study of iron oxide nanoparticles obtained by spray pyrolysis;150
20.1;1 Introduction;151
20.2;2 Experimental;151
20.3;3 Results and discussion;151
20.4;References;156
21;Solid-state synthesis of a-Fe and iron carbide nanoparticles by thermal treatment of amorphous Fe2O3;158
21.1;1 Introduction;158
21.2;2 Experimental;159
21.3;3 Results and discussion;160
21.4;4 Conclusion;163
21.5;References;163
22;ILEEMS of thin a-Fe2O3 films preparedby RF sputtering;165
22.1;1 Introduction;166
22.2;2 Experimental;166
22.3;3 Results and discussion;167
22.4;References;171
23;The Mössbauer spectroscopy studies of matrix changes during continuous heating from as-quenched state of high carbon tool steel;172
23.1;1 Introduction;172
23.2;2 Test material;173
23.3;3 Experimental procedure;173
23.4;4 Results and discussion;173
23.5;5 Conclusions;176
23.6;References;176
24;Mössbauer and magnetic studies of nanosize (Fe,Co)x C1-x alloys;178
24.1;1 Introduction;178
24.2;2 Experimental details;179
24.3;3 Experimental results;179
24.4;References;184
25;Ball milling induced interstitial atoms redistributions revealed by Mössbauer effect in Fe based alloys;185
25.1;1 Introduction and aim of the study;185
25.2;2 Experimental conditions and results;187
25.3;3 Discussion;189
25.4;4 Conclusion;191
25.5;References;191
26;Mössbauer spectroscopic investigation of retained-austenite content of high-carbon tool steel during isothermal tempering of as-quenched samples;193
26.1;1 Introduction;193
26.2;2 Test material;194
26.3;3 Experimental procedure;194
26.4;4 Results and discussion;194
26.5;5 Conclusions;197
26.6;References;197
27;Feature of solid–liquid metals reaction revealed by conversion electron Mössbauer spectrometry;199
27.1;1 Introduction;199
27.2;2 Experimental conditions and results;200
27.3;3 Discussion;204
27.4;4 Conclusions;205
27.5;References;205
28;Synthesis of Fe carbides species by reactive milling;207
28.1;1 Introduction;207
28.2;2 Experimental;208
28.3;3 Results and discussion;208
28.4;References;212
29;The fate of Fe3+ ions in the system {AlO(OH)-xerogel/ Fe-compounds} after mechanical activation and different thermal treatments studied by Mössbauer, ESR spectroscopy and thermal analysis;213
29.1;1 Introduction;213
29.2;2 Experimental;214
29.3;3 Results and discussion;215
29.4;4 Conclusions;219
29.5;References;219
30;Characterization of rapidly solidified powder of high-speed steel;220
30.1;1 Introduction;220
30.2;2 Experimental details;221
30.3;3 Results and discussion;221
30.4;4 Conclusions;225
30.5;References;226
31;Gummic acid stabilized .-Fe2O3 aqueous suspensionsfor biomedical applications;227
31.1;1 Introduction;227
31.2;2 Experimental;228
31.3;3 Results and discussion;229
31.4;4 Conclusion;233
31.5;References;233
32;Iron containing vitamins and dietary supplements: control of the iron state using Mössbauer spectroscopy with high velocity resolution;235
32.1;1 Introduction;235
32.2;2 Materials and methods;236
32.3;3 Results and discussion;237
32.4;4 Conclusion;241
32.5;References;242
33;Mobility of inorganic nanoparticles in soft matter;243
33.1;1 Introduction;243
33.2;2 Experimental and data evaluation;246
33.3;3 Results;247
33.4;4 Conclusion;252
33.5;References;253
34;Nanoscaled biocompatible magnetic drug-delivery system: preparation and characterization;254
34.1;1 Introduction;254
34.2;2 Experimental;255
34.3;3 Results and discussion;257
34.4;4 Conclusions;259
34.5;References;259
35;Mössbauer spectroscopic study of sulphonated poly(ether-urethane) linear ionomer doped with iron species;261
35.1;1 Introduction;262
35.2;2 Materials and methods;262
35.3;3 Results and discussion;263
35.4;4 Conclusions;265
35.5;References;266
36;Mössbauer characterisation of Fe–polygalacturonate as a medicine for human anaemia: the effect of iron concentration;267
36.1;1 Introduction;268
36.2;2 Experimental;269
36.3;3 Results and discussion;269
36.4;4 Conclusions;273
36.5;References;274
37;The characterisation of three different coal samples by means of various analytical techniques;275
37.1;1 Introduction;275
37.2;2 Experimental;276
37.3;3 Results and discussion;276
37.4;4 Conclusions;280
37.5;References;280
38;Mössbauer studies of raw materials from Misti volcano of Arequipa (Peru) for its potential application in the ceramic field;281
38.1;1 Introduction;282
38.2;2 Experimental;282
38.3;3 Results and discussion;283
38.4;4 Conclusion;285
38.5;References;285
39;Mössbauer study of Fe3+/Fe2+ ratio in amphiboles to search correlation with hydrogen isotope fractionation;286
39.1;1 Introduction;287
39.2;2 Experimental;287
39.3;3 Results;288
39.4;4 Discussion;290
39.5;5 Conclusions;291
39.6;References;292
40;Various stages of oxidation of chlorite as reflected in the Fe2+ and Fe3+ proportions in the Mössbauer spectra of minerals in Boda Claystone;293
40.1;1 Introduction;293
40.2;2 Experimental;294
40.3;3 Results;294
40.4;4 Discussion;297
40.5;References;297
41;Iron–nickel alloy from iron meteorite Chinga studied by Mössbauer spectroscopy with high velocity resolution;298
41.1;1 Introduction;298
41.2;2 Experimental;299
41.3;3 Results and discussion;299
41.4;4 Conclusion;304
41.5;References;304
42;Temperature dependence of the hyperfine parameters of the iron bearing phases in the Mössbauer spectra collected by the Mars Exploration Rover Spirit;306
42.1;1 Introduction;306
42.2;2 Experimental;307
42.3;3 Results and discussion;308
42.4;References;311
43;Mössbauer study of the Boom clay, a geological formation for the storage of radioactive wastes in Belgium;312
43.1;1 Introduction;312
43.2;2 Experimental;313
43.3;3 Results and discussion;313
43.4;References;320
44;Mössbauer effect study of fly and bottom ashes from an electric generating plant;321
44.1;1 Introduction;321
44.2;2 Experimental;322
44.3;3 Results and discussion;322
44.4;4 Conclusion;326
44.5;References;326
45;Iron Mössbauer redox and relation to technetium retention during vitrification;327
45.1;1 Introduction;327
45.2;2 Experimental;328
45.3;3 Results;329
45.4;References;333
46;57Fe Mossbauer study of sol.gel synthesized Sn1.x.yFexSbyO2.d powders;335
46.1;1 Introduction;336
46.2;2 Experimental;336
46.3;3 Results;337
46.4;4 Discussion;341
46.5;5 Conclusions;341
46.6;References;342
47;Exchange-spring magnets based on L10-FePt ordered phase;343
47.1;1 Introduction;343
47.2;2 Experimental procedure;344
47.3;3 Results and discussion;346
47.4;4 Conclusions;349
47.5;References;349
48;Mössbauer spectroscopy study of interfaces for spintronics;351
48.1;1 Introduction;351
48.2;2 Experimental details;352
48.3;3 Results and discussion;353
48.4;4 Conclusions;356
48.5;References;356
49;Study of rapid stress annealed nano-crystalline Fe74.5Cu1Nb3Si15.5B6 alloy;357
49.1;1 Introduction;358
49.2;2 Experimental;358
49.3;3 Results and discussions;360
49.4;4 Conclusions;362
49.5;References;363
50;Characterization of magnetic nano-fluids via Mössbauer spectroscopy;364
50.1;1 Introduction;364
50.2;2 Experimental;365
50.3;3 Results and discussion;365
50.4;4 Conclusions;369
50.5;References;369
51;Determination of foreign phases in Fe–As based superconducting systems;370
51.1;1 Introduction;370
51.2;2 Experimental details;371
51.3;3 Experimental results and discussion;371
51.4;4 Conclusions;374
51.5;References;374
52;Detailed Mössbauer study of the cation distribution in CoFe2O4 ferrites;375
52.1;1 Introduction;375
52.2;2 Materials and methods;376
52.3;3 Results and discussion;378
52.4;4 Conclusion;381
52.5;References;382
53;Substitution effect of Ba at the Sr sites in Sr(Fe,Re)O3;383
53.1;1 Introduction;383
53.2;2 Experimental;384
53.3;3 Results;384
53.4;4 Conclusion;387
53.5;References;387
54;Fe(II) spin-crossover compounds based on the extremely versatile ligand system of 1-substituted tetrazoles: a comparative study;389
54.1;1 Introduction;389
54.2;2 Results and discussion;390
54.3;References;394
55;Characterization of magnetite nanoparticles supported in sulfonated styrene-divinylbenzene mesoporous copolymer;395
55.1;1 Introduction;396
55.2;2 Experimental;396
55.3;3 Results and discussion;397
55.4;References;400
56;Origin of ferromagnetism in iron implanted rutile single crystals;402
56.1;1 Introduction;402
56.2;2 Experimental;403
56.3;3 Results and discussion;404
56.4;4 Summary;408
56.5;References;409
57;Magnetic phase transition of the bond random mixed compound Fe(BrxI1-x)2;410
57.1;1 Introduction;410
57.2;2 Experimental;411
57.3;3 Results and discussion;411
57.4;References;414
58;Effects of B and P content on structural and magnetic properties of cast iron based amorphous alloys;415
58.1;1 Introduction;416
58.2;2 Experimental;416
58.3;3 Results and discussions;416
58.4;4 Conclusions;419
58.5;References;419
59;Mössbauer study of Fe in GaAs following 57Mn+ implantation;420
59.1;1 Introduction;421
59.2;2 Experimental;421
59.3;3 Results and discussion;423
59.4;4 Conclusions;424
59.5;References;425
60;Iron films produced by an arc plasma gun;426
60.1;1 Introduction;426
60.2;2 Experimental;427
60.3;3 Results and discussion;428
60.4;4 Conclusions;431
60.5;References;432
61;Interface mixing in Fe–B–Ag multilayers;433
61.1;1 Introduction;433
61.2;2 Experimental;434
61.3;3 3 Results and discussion;434
61.4;4 Conclusion;437
61.5;References;438
62;Spin configurations and interfacial diffusion in exchange bias and spin valve systems with Ir–Mn antiferromagnetic pinning layers;439
62.1;1 Introduction;440
62.2;2 Experimental;440
62.3;3 Results and discussion;441
62.4;4 Conclusions;444
62.5;References;445
63;Interfacial microstructure and properties of dissimilar steels joined by high energy beam melting processes;446
63.1;1 Introduction;446
63.2;2 Experimental;447
63.3;3 Results and discussion;448
63.4;4 Conclusions;452
63.5;References;453
64;Iron oxide modified minerals;454
64.1;1 Introduction;454
64.2;2 Materials and methods;455
64.3;3 Results and discussion;456
64.4;4 Conclusions;459
64.5;References;459
65;Nano-structure analysis of Fe implanted SnO2 films by 57Fe and 119Sn CEMS;461
65.1;1 Introduction;461
65.2;2 Experimental;462
65.3;3 Results;462
65.4;4 Conclusions;466
65.5;References;467
66;Surface effects in a-Fe2O3 nanoparticles studied by ILEEMS and TMS;468
66.1;1 Introduction;468
66.2;2 Experimental;469
66.3;3 Results and discussion;469
66.4;4 Conclusions;471
66.5;References;472
67;The structure and composition of novel electrodeposited Sn–Fe and Sn–Co–Fe alloys from a flow circulation cell system;473
68;Study of Au/SnOx–Al2O3 catalysts used in CO oxidation by in situ Mössbauer spectroscopy;485
69;Comparison of Fe-AlPILC and Fe-ZSM-5 catalysts used for degradation of methomyl;494
70;Dissolution behaviour of iron silicate glass;501
71;Structural studies of iron in vitrified toxic wastes;507
72;Formation and characterization of boride coatings thermochemically grown on the Fe64Ni36 alloy;513
73;Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere;520
74;Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates;529
75;Failure analysis of magnets in a servomotor by Mössbauer and X-ray diffraction;536
76;The method of invariants applied to the analysis of 57Fe Mössbauer spectra;543
77;A versatile gas-flow proportional counter for Mössbauer spectroscopy;550