Labhart | Einführung in die Physikalische Chemie | E-Book | sack.de
E-Book

E-Book, Deutsch, 156 Seiten, eBook

Reihe: Hochschultexte / Universitexts

Labhart Einführung in die Physikalische Chemie

Teil V: Molekülspektroskopie
2. Auflage 1984
ISBN: 978-3-642-69434-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Teil V: Molekülspektroskopie

E-Book, Deutsch, 156 Seiten, eBook

Reihe: Hochschultexte / Universitexts

ISBN: 978-3-642-69434-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Labhart Einführung in die Physikalische Chemie jetzt bestellen!

Zielgruppe


Lower undergraduate

Weitere Infos & Material


1. Einleitung.- 1.1. Beschreibung der Strahlung.- 1.2. Allgemeine Gesetze der Wechselwirkung von Strahlung mit Molekülen.- 1.3. Eine Gesamtheit von Molekülen im Strahlungsfeld.- 1.4. Unterteilung des Gebietes der Molekül- Spektroskopie.- 2. Magnetische Kernresonanz.- 2.1. Eigenschaften von Kernen.- 2.2. Kerne im Magnetfeld.- 2.3. Experimentelle Anordnungen zur Beobachtung der Kernresonanz.- 2.4. Das Magnetfeld am Ort der Kerne.- 2.5. Durch Bindungselektronen vermittelte Wechselwirkung zwischen Kernspins.- 2.6. Abhängigkeit der Kernresonanzspektren von der Bewegung der Moleküle.- 2.7. Quadrupoleffekte.- 2.8. Kernresonanzspektren in flüssiger Lösung.- 2.9. Signalform und kinetische Phänomene.- 3. Elektronenspinresonanz.- 3.1. Freies Elektron im Magnetfeld.- 3.2. Experimentelles.- 3.3. Das Elektronenspinresonanz-Spektrum von atomarem Wasserstoff.- 3.4. Aromatische Radikalionen.- 3.5. Alkyl-Radikale.- 3.6. Linienform und Relaxationseffekte.- 4. Übergänge zwischen Rotationszuständen.- 4.1. Das Rotationsspektrum von linearen Molekülen.- 4.2. Experimentelles.- 4.3. Rotationsspektren nicht linearer Moleküle.- 4.4. Auswertung von Rotationsspektren.- 5. Übergänge zwischen Vibrationszuständen.- 5.1. Das Vibrationsspektrum eines zweiatomigen Moleküls.- 5.2. Experimentelles zur IR-Spektroskopie.- 5.3. Das Rotations-Schwingungsspektrum von zweiatomigen Molekülen.- 5.4. Infrarotspektren mehratomiger Moleküle.- 5.5. Anwendungen der IR-Spektroskopie.- 5.6. Raman-Spektren.- 6. Übergänge zwischen Elektronenzuständen.- 6.1. Das Spektrum eines Elektrons im eindimensionalen Potentialkasten.- 6.2. Das Spektrum eines zweiatomigen Moleküls im Gaszustand.- 6.3. Spektren von mehratomigen Molekülen in Lösung.- 6.4. Charakterisierung von Absorptionsbanden in Lösung.- 6.5.Beobachtungsmaterial und seine Deutung im Hückelmodell.- 6.6. Desaktivierung von Molekülen in Lösung.- 6.7. Induzierte Emission, Laser.- 7. Photoelektronen-Spektroskopie.- 7.1. Prinzip.- 7.2. Experimentelles.- 7.3. UV-Photoelektronenspektren.- 7.4. Deutung von UV-Photoelektronenspektren im MO-Modell.- 7.5. X-Photoelektronenspektren (ESCA).- 8. Röntgenfluoreszenz-Spektroskopie.- 8.1. Prinzip.- 8.2. Experimentelles.- 8.3. Anwendung der Röntgenfluoreszenz- Spektroskopie.- 9. Mössbauer-Spektroskopie.- 9.1. Prinzip und Experimentelles.- 9.2. Anwendungen.- 10. Elektronenstoss-Spektroskopie.- 10.1. Prinzip.- 10.2. Experimentelles.- 10.3. Elektronenenergie-Verlust-Spektren.- 10.4. Elektronen-Transmissions-Spektren.- Anhang I Zur quantenmechanischen Behandlung der Wechselwirkung von Strahlung mit Molekülen.- Anhang II Berechnung von Übergangsmomenten für zweiatomige Moleküle.- 2. Umschlagseite: Internationales Mass-System (SI-Einheiten).- 3. Umschlagseite: Naturkonstanten.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.