Buch, Englisch, 619 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1115 g
Reihe: Springer Texts in Statistics
Buch, Englisch, 619 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1115 g
Reihe: Springer Texts in Statistics
ISBN: 978-0-387-32903-1
Verlag: Springer
This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure theory and probability theory in a simple and easy-to-understand way. It further provides heuristic explanations behind the theory to help students see the big picture. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
Weitere Infos & Material
Measures and Integration: An Informal Introduction.- Measures.- Integration.- Lp-Spaces.- Differentiation.- Product Measures, Convolutions, and Transforms.- Probability Spaces.- Independence.- Laws of Large Numbers.- Convergence in Distribution.- Characteristic Functions.- Central Limit Theorems.- Conditional Expectation and Conditional Probability.- Discrete Parameter Martingales.- Markov Chains and MCMC.- Stochastic Processes.- Limit Theorems for Dependent Processes.- The Bootstrap.- Branching Processes.