E-Book, Englisch, 374 Seiten, eBook
Lahiri Resampling Methods for Dependent Data
2003
ISBN: 978-1-4757-3803-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 374 Seiten, eBook
Reihe: Springer Series in Statistics
ISBN: 978-1-4757-3803-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
By giving a detailed account of bootstrap methods and their properties for dependent data, this book provides illustrative numerical examples throughout. The book fills a gap in the literature covering research on re-sampling methods for dependent data that has witnessed vigorous growth over the last two decades but remains scattered in various statistics and econometrics journals. It can be used as a graduate level text and also as a research monograph for statisticians and econometricians.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Scope of Resampling Methods for Dependent Data.- 2 Bootstrap Methods.- 3 Properties of Block Bootstrap Methods for the Sample Mean.- 4 Extensions and Examples.- 5 Comparison of Block Bootstrap Methods.- 6 Second-Order Properties.- 7 Empirical Choice of the Block Size.- 8 Model-Based Bootstrap.- 9 Frequency Domain Bootstrap.- 10 Long-Range Dependence.- 11 Bootstrapping Heavy-Tailed Data and Extremes.- 12 Resampling Methods for Spatial Data.- A.- B.- References.- Author Index.




