Lavrac / Dzeroski / Lavrac | Relational Data Mining | Buch | 978-3-642-07604-6 | sack.de

Buch, Englisch, 398 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Lavrac / Dzeroski / Lavrac

Relational Data Mining


1. Auflage. Softcover version of original hardcover Auflage 2001
ISBN: 978-3-642-07604-6
Verlag: Springer

Buch, Englisch, 398 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

ISBN: 978-3-642-07604-6
Verlag: Springer


As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining.

This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

Lavrac / Dzeroski / Lavrac Relational Data Mining jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. Introduction.- 1. Data Mining in a Nutshell.- 2. Knowledge Discovery in Databases: An Overview.- 3. An Introduction to Inductive Logic Programming.- 4. Inductive Logic Programming for Knowledge Discovery in Databases.- II. Techniques.- 5. Three Companions for Data Mining in First Order Logic.- 6. Inducing Classification and Regression Trees in First Order Logic.- 7. Relational Rule Induction with CProgol4.4: A Tutorial Introduction.- 8. Discovery of Relational Association Rules.- 9. Distance Based Approaches to Relational Learning and Clustering.- III. From Propositional to Relational Data Mining.- 10. How to Upgrade Propositional Learners to First Order Logic: A Case Study.- 11. Propositionalization Approaches to Relational Data Mining.- 12. Relational Learning and Boosting.- 13. Learning Probabilistic Relational Models.- IV. Applications and Web Resources.- 14. Relational Data Mining Applications: An Overview.- 15. Four Suggestions and a Rule Concerning the Application of ILP.- 16. Internet Resources on ILP for KDD.- Author Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.