E-Book, Englisch, 735 Seiten
Le Pichon / Blanc / Hauchecorne Infrasound Monitoring for Atmospheric Studies
2009
ISBN: 978-1-4020-9508-5
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 735 Seiten
ISBN: 978-1-4020-9508-5
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
The use of infrasound to monitor the atmosphere has, like infrasound itself, gone largely unheard of through the years. But it has many applications, and it is about time that a book is being devoted to this fascinating subject. Our own involvement with infrasound occurred as graduate students of Prof. William Donn, who had established an infrasound array at the Lamont-Doherty Geological Observatory (now the Lamont-Doherty Earth Observatory) of Columbia University. It was a natural outgrowth of another major activity at Lamont, using seismic waves to explore the Earth's interior. Both the atmosphere and the solid Earth feature velocity (seismic or acoustic) gradients in the vertical which act to refract the respective waves. The refraction in turn allows one to calculate the respective background structure in these mediums, indirectly exploring locations that are hard to observe otherwise. Monitoring these signals also allows one to discover various phenomena, both natural and man-made (some of which have military applications).
A. Le Pichon (Master Degree in Fundamental Physics. PhD in Acoustics) Since 1998, geophysicist at the French National Data Center (NDC), hosted by CEA/DASE, in charge of Infrasound research activities on topics relevant to Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO): signal processing for automated detection and source location procedures, propagation modeling, methods for source characterization. E. Blanc: Research director at CEA. Main research areas are infrasound and gravity waves, electrodynamical coupling of the atmospheric layers, atmospheric disturbances produced by lightning and sprites. She coordinated international research projects: study of infrasound from strong chemical explosions in USA and in Russia, HF radar observations of the disturbances of the equatorial ionosphere, space observations of lightning and sprite. A. Hauchecorne (Research director at CNRS; since 2005 Director of Aeronomy Service Laboratory):Main research areas are dynamics and climatology of the middle atmosphere; transport and mixing of ozone and minor constituents in the stratosphere; analysis of satellite data analysis and data assimilation in the field of stratospheric chemistry; lidar techniques for the measurement of stratospheric parameters.
Autoren/Hrsg.
Weitere Infos & Material
1.1;Infrasound Monitoring for Atmospheric Studies;1
1.1.1;Preface;1
1.1.2;Foreword;1
1.1.3;Introduction;1
1.1.4;Contributors;1
2;Part1.pdf;18
3;LePichon_Ch01.pdf;19
3.1;Chapter 1;19
3.1.1;The Characteristics of Infrasound, its Propagation and Some Early History;19
3.1.1.1;1.1 The Physical Characteristics of Infrasound;19
3.1.1.2;1.2 The Atmosphere as Medium of Propagation;20
3.1.1.3;1.3 The Propagation of Infrasound;23
3.1.1.4;1.4 The Early History of Infrasound;25
3.1.1.4.1;1.4.1 The Eruption of Krakatoa in 1883;25
3.1.1.4.2;1.4.2 The Great Siberian Meteor in 1908 and the First Microbarometer;28
3.1.1.4.3;1.4.3 The Shadow Zone Debate;30
3.1.1.4.3.1;1.4.3.1 The Effect of Composition or Wind?;30
3.1.1.4.3.2;1.4.3.2 The Siege of Antwerp During 1914;32
3.1.1.4.3.3;1.4.3.3 The Temperature in the Stratosphere;33
3.1.1.4.4;1.4.4 The Work of Victor Hugo Benioff and Beno Gutenberg;34
3.1.1.4.5;1.4.5 Infrasound and Nuclear Testing;35
3.1.1.5;1.5 The Current Era: Infrasound and the Signature of the CTBT;40
3.1.2;References;41
4;LePichon_Ch02.pdf;44
4.1;Chapter 2;44
4.1.1;The IMS Infrasound Network: Design and Establishment of Infrasound Stations;44
4.1.1.1;2.1 Introduction;44
4.1.1.2;2.2 The Global IMS Infrasound Network;45
4.1.1.3;2.3 Infrasound Monitoring Stations;50
4.1.1.4;2.4 Infrasound Sensors;51
4.1.1.5;2.5 Infrasonic Array Design;53
4.1.1.5.1;2.5.1 Spatial Aliasing of High Frequency Signals;55
4.1.1.5.2;2.5.2 Signal Correlation Between Array Elements;58
4.1.1.6;2.6 Background Noise;69
4.1.1.7;2.7 Concluding Remarks;85
4.1.1.8;2.8 Disclaimer;86
4.1.2;References;86
5;LePichon_Ch03.pdf;91
5.1;Chapter 3;91
5.1.1;Monitoring the Earth’s Atmosphere with the Global IMS Infrasound Network;91
5.1.1.1;3.1 Station Processing;92
5.1.1.1.1;3.1.1 Detection of Infrasound Signals;93
5.1.1.1.1.1;3.1.1.1 Detection Using Waveform Cross-Correlation;93
5.1.1.1.1.2;3.1.1.2 Consistency Used as a Threshold for Detection;94
5.1.1.1.1.3;3.1.1.3 Progressiveness;94
5.1.1.1.1.4;3.1.1.4 Data Quality Control;95
5.1.1.1.1.5;3.1.1.5 Postprocessing: Building PMCC Families;96
5.1.1.1.2;3.1.2 Feature Extraction of Infrasound Signals;98
5.1.1.1.2.1;3.1.2.1 Amplitude Determination;98
5.1.1.1.2.2;3.1.2.2 Station Noise Characterization;100
5.1.1.1.3;3.1.3 Detection Categorization and Phase Identification;101
5.1.1.1.3.1;3.1.3.1 Categorization on Individual Detections;102
5.1.1.1.3.2;3.1.3.2 Categorization on Clusters of Detections (Meta-Families);103
5.1.1.1.3.3;3.1.3.3 Phase Identification;106
5.1.1.2;3.2 Network Processing;108
5.1.1.2.1;3.2.1 Building Candidate Seed Events;108
5.1.1.2.2;3.2.2 Fusion Between Different Waveform Technologies: Seismic, Infrasound, and Hydroacoustic;109
5.1.1.2.3;3.2.3 Limiting the Number of False Infrasound Associations;111
5.1.1.2.4;3.2.4 Atmospheric Modeling;112
5.1.1.3;3.3 Interactive Processing;116
5.1.1.3.1;3.3.1 Analysts’ Review Tool;117
5.1.1.3.2;3.3.2 Contribution of Infrasound Data to IDC Event Bulletin;117
5.1.1.3.2.1;3.3.2.1 Purely Infrasound Events;117
5.1.1.3.2.1.1;Rocket Launches and Re-Entries;117
5.1.1.3.2.1.2;Bolides;119
5.1.1.3.2.1.3;Volcanic Eruptions;120
5.1.1.3.2.1.4;Microbaroms;122
5.1.1.3.2.2;3.3.2.2 Mixed Technology Events;122
5.1.1.3.2.2.1;Earthquakes;122
5.1.1.3.2.2.2;Surface Explosions;126
5.1.1.3.2.3;3.3.2.3 Importance of Meteorological Data at the Station;128
5.1.1.3.2.4;3.3.2.4 Nondefining Infrasound Phases Associated to Events: Ix;128
5.1.2;References;131
6;LePichon_Ch04.pdf;133
6.1;Chapter 4;133
6.1.1;Low-Noise Broadband Microbarometers;133
6.1.1.1;4.1 Background;133
6.1.1.1.1;4.1.1 Self-Noise;133
6.1.1.1.2;4.1.2 Pressure Range;134
6.1.1.1.3;4.1.3 Dynamic Range;135
6.1.1.1.4;4.1.4 Environmental Constraints;135
6.1.1.1.5;4.1.5 Transfer Function;136
6.1.1.2;4.2 Absolute Infrasound Sensors;136
6.1.1.2.1;4.2.1 Principle of Operation, Mechanics;136
6.1.1.2.1.1;4.2.1.1 Aneroid Capsule;137
6.1.1.2.1.2;4.2.1.2 Measurement Cavity;139
6.1.1.2.1.3;4.2.1.3 Inlets and Noise Reducers;141
6.1.1.2.1.4;4.2.1.4 Full Sensor Acoustic Models;141
6.1.1.2.2;4.2.2 Transducers;142
6.1.1.2.2.1;4.2.2.1 Linear Variable Differential Transformer (LVDT);142
6.1.1.2.2.2;4.2.2.2 Magnet and Coil Velocity Transducer;143
6.1.1.2.2.3;4.2.2.3 Quartz Crystal Resonator Stress Transducer;145
6.1.1.3;4.3 Differential Infrasound Sensors;145
6.1.1.3.1;4.3.1 Principle of Operation, Pressure Sensitive Part;146
6.1.1.3.2;4.3.2 Sensitive Mechanics;147
6.1.1.3.3;4.3.3 Transducers;147
6.1.1.3.3.1;4.3.3.1 Externally Polarized Capacitive Displacement Transducers;148
6.1.1.3.3.2;4.3.3.2 Prepolarized Capacitive Displacement Transducers;149
6.1.1.3.4;4.3.4 Piezoelectric-Based Transducers;150
6.1.1.3.4.1;4.3.4.1 Optical Motion Transducer;150
6.1.1.4;4.4 Other Infrasound Sensors;151
6.1.1.4.1;4.4.1 Liquid Microbarometer;151
6.1.1.4.2;4.4.2 Particle Velocity Sensors;152
6.1.1.5;4.5 Conclusions;153
6.1.2;References;153
7;LePichon_Ch05.pdf;155
7.1;Chapter 5;155
7.1.1;A Review of Wind-Noise Reduction Methodologies;155
7.1.1.1;5.1 Introduction;155
7.1.1.1.1;5.1.1 Importance of Infrasound in Science and Monitoring;155
7.1.1.1.2;5.1.2 Observations of Wind Noise During Measurements of Infrasound;156
7.1.1.2;5.2 Wind-Noise Theory;157
7.1.1.2.1;5.2.1 The Physics of Wind;157
7.1.1.2.2;5.2.2 Predicting Turbulence Potential from Meteorological Data;158
7.1.1.2.3;5.2.3 Geographic Influences on Wind;159
7.1.1.2.4;5.2.4 Taylor’s Hypothesis;161
7.1.1.2.5;5.2.5 Turbulence Length Scales and Noise Spectra;162
7.1.1.2.6;5.2.6 Types of Wind Noise;164
7.1.1.2.6.1;5.2.6.1 Wind Velocity Fluctuations;164
7.1.1.2.6.2;5.2.6.2 Interactions Between the Sensor and the Wind;164
7.1.1.2.6.3;5.2.6.3 Pressure Anomalies Advected Across the Sensor;165
7.1.1.2.6.3.1;Turbulence–Turbulence Interaction;165
7.1.1.2.6.3.2;Turbulence–Mean Shear Interaction;166
7.1.1.2.6.3.3;Correlation Distance of Turbulence;167
7.1.1.2.6.4;5.2.6.4 Acoustic Energy Generated by Wind;168
7.1.1.2.6.5;5.2.6.5 Distinguishing between Wind Noise Types;168
7.1.1.3;5.3 Wind-Noise Reduction Methodologies;170
7.1.1.3.1;5.3.1 Daniels Filter;171
7.1.1.3.2;5.3.2 Rosette Pipe Filters;172
7.1.1.3.3;5.3.3 Microporous Hoses;175
7.1.1.3.4;5.3.4 Optical Fiber Infrasound Sensor;178
7.1.1.3.5;5.3.5 Distributed Sensor (Adaptive Processing with a Dense Array);182
7.1.1.3.6;5.3.6 Porous Media Filters;183
7.1.1.3.7;5.3.7 Wind Barriers;185
7.1.1.4;5.4 Discussion;189
7.1.1.5;5.5 Conclusions;192
7.1.2;References;193
8;Part2.pdf;197
9;LePichon_Ch06.pdf;198
9.1;Chapter 6;198
9.1.1;Worldwide Observations of Infrasonic Waves;198
9.1.1.1;6.1 Introduction;198
9.1.1.2;6.2 Observations of Infrasonic Waves at IMS Infrasound Stations;199
9.1.1.3;6.3 Natural Sources of Infrasound;201
9.1.1.3.1;6.3.1 Microbaroms;202
9.1.1.3.2;6.3.2 Mountain-Generated Infrasound;204
9.1.1.3.3;6.3.3 Auroral Infrasound;205
9.1.1.3.4;6.3.4 Infrasound from Meteorological Sources, Lightning and Sprites;206
9.1.1.3.5;6.3.5 Earthquakes;209
9.1.1.3.6;6.3.6 Meteors;213
9.1.1.3.7;6.3.7 Calving of Icebergs and Glaciers;214
9.1.1.3.8;6.3.8 Volcanic Eruptions;217
9.1.1.4;6.4 Man-Made Sources of Infrasound;226
9.1.1.4.1;6.4.1 Launching of Rockets and the Re-Entry of the Space Shuttle and Space Debris;226
9.1.1.4.2;6.4.2 Infrasound from Aircraft;227
9.1.1.4.3;6.4.3 Chemical Explosions;231
9.1.1.4.4;6.4.4 Nuclear Explosions;233
9.1.1.5;6.5 Practical Applications of Infrasonic Data;236
9.1.1.5.1;6.5.1 Tomography of the Upper Atmosphere;236
9.1.1.5.2;6.5.2 Geophysical Hazard Warning Systems;237
9.1.1.5.3;6.5.3 Observation of Meteors;238
9.1.1.5.4;6.5.4 Global Warming;238
9.1.1.5.5;6.5.5 Forensic Investigations;238
9.1.1.6;6.6 Concluding Remarks;239
9.1.1.7;6.7 Disclaimer;240
9.1.2;References;240
10;LePichon_Ch07.pdf;248
10.1;Chapter 7;248
10.1.1;Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea;248
10.1.1.1;7.1 Introduction;248
10.1.1.2;7.2 Background;249
10.1.1.3;7.3 Observations;251
10.1.1.4;7.4 General Approach;253
10.1.1.5;7.5 Concluding Remarks;258
10.1.2;References;259
11;LePichon_Ch08.pdf;262
11.1;Chapter 8;262
11.1.1;Generation of Microbaroms by Deep-Ocean Hurricanes;262
11.1.1.1;8.1 Introduction;262
11.1.1.2;8.2 Hurricane Monitoring and Modeling;263
11.1.1.3;8.3 Atmospheric Pressure Waves Produced by Ocean Waves;264
11.1.1.3.1;8.3.1 The Ocean Wave Frequency Spectrum;264
11.1.1.3.2;8.3.2 Ocean Waves as an Acoustic Transducer;266
11.1.1.3.2.1;8.3.2.1 A One-Sided Transducer;266
11.1.1.3.2.2;8.3.2.2 Application to Ocean Waves;268
11.1.1.3.3;8.3.3 Realistic Ocean Waves;270
11.1.1.4;8.4 The Microbarom Generation Region of Deep-Ocean Hurricanes;271
11.1.1.5;8.5 Conclusion;273
11.1.2;References;273
12;LePichon_Ch09.pdf;276
12.1;Chapter 9;276
12.1.1;Acoustic-Gravity Waves from Earthquake Sources;276
12.1.1.1;9.1 Introduction;276
12.1.1.2;9.2 Low-Frequency Acoustic-Gravity Waves from Earthquake Source;277
12.1.1.2.1;9.2.1 Observations;277
12.1.1.2.2;9.2.2 Theoretical Considerations on the Generation Mechanism of Low-Frequency Waves, and Their Waveform Modeling;279
12.1.1.2.3;9.2.3 Comparison Between the Recorded and Theoretical Barograms;281
12.1.1.2.4;9.2.4 Implications of Propagation of Low-Frequency Acoustic-Gravity Waves to Long Distances;284
12.1.1.3;9.3 Medium- to High-Frequency Infrasonic Waves from Earthquake Source;284
12.1.1.4;9.4 Ground – Coupled Atmospheric Pressure Perturbations;286
12.1.1.5;9.5 Atmospheric Gravity Waves Induced by Tsunami Waves;288
12.1.1.6;9.6 Summary;289
12.1.2;References;290
13;LePichon_Ch10.pdf;293
13.1;Chapter 10;293
13.1.1;Seismic Waves from Atmospheric Sources and Atmospheric/Ionospheric Signatures of Seismic Waves;293
13.1.1.1;10.1 Introduction;293
13.1.1.2;10.2 Theoretical Modeling of the Seismic Waves in the Neutral and Ionized Atmosphere;294
13.1.1.2.1;10.2.1 Solid Earth–Neutral Atmosphere Coupling;294
13.1.1.2.2;10.2.2 Neutral Atmosphere – Ionospheric Coupling;297
13.1.1.3;10.3 Observation and Inversions;300
13.1.1.3.1;10..3.1 Atmospheric Coupling at the Source;301
13.1.1.3.2;10.3.2 Ionospheric–Atmospheric Coupling of Seismic Waves;306
13.1.1.4;10.4 Ionospheric–Atmospheric Coupling of Tsunami Waves;310
13.1.1.5;10.5 Exporting Remote Sensing Seismology on Venus?;312
13.1.1.6;10.6 Conclusion;313
13.1.2;References;313
14;LePichon_Ch11.pdf;317
14.1;Chapter 11;317
14.1.1;Acoustic-Gravity Waves from Impulsive Sources in the Atmosphere;317
14.1.1.1;11.1 Atmospheric Modeling and the Acoustic-Gravity Wave (AGW) Spectrum;317
14.1.1.1.1;11.1.1 Introduction to the Atmospheric Medium;317
14.1.1.1.2;11.1.2 Key Environmental Parameters: Temperature/Sound Speed and Horizontal Wind Speed;318
14.1.1.1.3;11.1.3 AGW Resonant Frequencies and Relevant Spatial Scales;320
14.1.1.2;11.2 Atmospheric Wave Kinematics, Path Dynamics, and Inviscid Energetics;324
14.1.1.2.1;11.2.1 Underlying Physical AGW Regimes;324
14.1.1.2.1.1;11.2.1.1 Modeling Approaches for AGWs;325
14.1.1.2.2;11.2.2 Wave Normals and Ray Paths: Tracing the Trajectories of Infrasonic Waves;326
14.1.1.2.2.1;11.2.2.1 Meteoroid Wave Source Models: “Airwave” Objects;327
14.1.1.2.3;11.2.3 Resulting Wave Normal Paths;328
14.1.1.2.4;11.2.4 Wave Kinetic Energy Density Conservation;331
14.1.1.3;11.3 Impulsive Atmospheric Sources: Meteor-Fireballs (Bolides), Rockets, and Missiles, etc.: Systematic Analysis of their AGW;332
14.1.1.3.1;11.3.1 Meteor-Fireballs and Bolides as Sources;333
14.1.1.4;11.4 Meteor-Fireballs as a Wave Source;335
14.1.1.4.1;11.4.1 Entry Dynamics and Energetics;335
14.1.1.4.2;11.4.2 Top–Down, Direct Entry Approach;336
14.1.1.4.3;11.4.3 Bottom-Up, Inverse Entry Approach;340
14.1.1.4.4;11.4.4 Wave Source Parameters;342
14.1.1.4.5;11.4.5 Source Coupling to the Atmosphere: Hypersonic Flow Field Matching of the Pressure Wave Disturbances;345
14.1.1.5;11.5 Acoustic-Gravity Wave (AGW) Generation from Impulsive Atmospheric Sources;346
14.1.1.5.1;11.5.1 Previous AGW Modeling Efforts;346
14.1.1.5.2;11.5.2 Most Recent Acoustic-Gravity Wave (AGW) Modeling;346
14.1.1.5.3;11.5.3 AGW Results for Large and Distant Meteors;355
14.1.1.5.4;11.5.4 Results for Small, Quite Close Meteors;361
14.1.1.5.5;11.5.5 Generalized Results;361
14.1.1.6;11.6 Future Work;364
14.1.1.7;Appendix: Diffuse Shock Waves at High Altitudes in Isothermal and NonIsothermal Atmospheres;364
14.1.1.7.1;Meteor Source Energy Coupling to the Atmosphere: Line Source Blast Waves;365
14.1.1.7.2;Near-Field vs. Far-Field Wave Amplitude Behavior;366
14.1.1.7.3;Isothermal vs. Nonisothermal Atmospheric Relationships;368
14.1.2;References;369
15;LePichon_Ch12.pdf;372
15.1;Chapter 12;372
15.1.1;Meteor Generated Infrasound: Theory and Observation;372
15.1.1.1;12.1 Introduction and the History of Meteor Infrasound;372
15.1.1.2;12.2 A Primer on Single-Body Meteor Physics;377
15.1.1.3;12.3 Cylindrical Line Source Theory: Inhomogeneous Stratified Atmosphere;383
15.1.1.3.1;12.3.1 Meteor Generated Infrasound: The Cylindrical Line Source Approximation;383
15.1.1.3.2;12.3.2 Implementation of Cylindrical Line Source Theory;392
15.1.1.4;12.4 Regional Observations of Meteor Infrasound;397
15.1.1.4.1;12.4.1 Identification and Detection of Meteor Infrasound;397
15.1.1.4.2;12.4.2 Observations of Regional Meteor Infrasound;402
15.1.1.5;12.5 Long Range Observations of Meteor Infrasound;411
15.1.1.5.1;12.5.1 The Sources of Long Range Meteor Infrasound;411
15.1.1.5.2;12.5.2 Observations of Long-Range Meteor Infrasound;413
15.1.1.6;12.6 Conclusions;419
15.1.2;References;420
16;LePichon_Ch13.pdf;426
16.1;Chapter 13;426
16.1.1;High-latitude Observations of Infrasound from Alaska and Antarctica: Mountain Associated Waves and Geomagnetic/Auroral Infraso;426
16.1.1.1;13.1 Introduction;426
16.1.1.2;13.2 Mountain Associated Waves;427
16.1.1.2.1;13.2.1 MAW at I53US in Fairbanks, Alaska;428
16.1.1.2.2;13.2.2 MAW at I55US in Windless Bight, Antarctica;439
16.1.1.3;13.3 Auroral Infrasound Waves;446
16.1.1.3.1;13.3.1 AIW Bow Waves from Auroral Electrojet Motions;446
16.1.1.3.2;13.3.2 High Trace-Velocity GAIW Infrasound Signals;451
16.1.1.3.3;13.3.3 Simultaneous Observation of GAIW at both I53US in Alaska and I55US in Antarctica;460
16.1.1.3.4;13.3.4 Conclusion and Future Research;465
16.1.2;References;465
17;LePichon_Ch14.pdf;466
17.1;Chapter 14;466
17.1.1;Some Atmospheric Effects on Infrasound Signal Amplitudes;466
17.1.1.1;14.1 Infrasound Sources;466
17.1.1.2;14.2 The Influence of the Atmosphere;468
17.1.1.3;14.3 Quantifying the Effects of Wind on Infrasound Signals;472
17.1.1.4;14.4 The Los Alamos He Data Set;474
17.1.1.5;14.5 Determination of Wind Characteristics;478
17.1.1.6;14.6 Some Recent Studies Using IMS Data;483
17.1.1.7;14.7 Conclusions;483
17.1.2;References;484
18;LePichon_Ch15.pdf;486
18.1;Chapter 15;486
18.1.1;Atmospheric Variability and Infrasound Monitoring;486
18.1.1.1;15.1 Introduction;486
18.1.1.2;15.2 The Atmosphere and Infrasound Propagation;488
18.1.1.2.1;15.2.1 A History of Our Understanding of Acoustic Propagation;488
18.1.1.2.2;15.2.2 Application to Infrasound Propagation;490
18.1.1.3;15.3 Spatiotemporal Variability of the Atmosphere;493
18.1.1.3.1;15.3.1 Vertical Temperature Structure;494
18.1.1.3.2;15.3.2 General Circulation;495
18.1.1.3.3;15.3.3 Planetary Waves – Synoptic Scale Meteorology;498
18.1.1.3.4;15.3.4 Migrating and Nonmigrating Solar Tides;499
18.1.1.3.5;15.3.5 Gravity (Internal Buoyancy) Wave Spectrum;501
18.1.1.4;15.4 The Effect of the Atmosphere on Infrasound Monitoring: Case Studies;503
18.1.1.4.1;15.4.1 Temporal Variations in Signal Characteristics;503
18.1.1.4.2;15.4.2 Spatial Variations in Signal Characteristics;507
18.1.1.4.3;15.4.3 Spatial and Temporal Variations in Signal Characteristics;510
18.1.1.5;15.5 Discussion;510
18.1.2;References;514
19;Part3.pdf;519
20;LePichon_Ch16.pdf;520
20.1;Chapter 16;520
20.1.1;On the Prospects for Acoustic Sounding of the Fine Structure of the Middle Atmosphere;520
20.1.1.1;16.1 Introduction;520
20.1.1.2;16.2 Prospects for Using the Method of Acoustic Sounding to Study the Middle Atmosphere;523
20.1.1.3;16.3 Rapid Variations in Infrasonic Signals at Long Distances from Repeated Explosions;525
20.1.1.4;16.4 Partial Reflection of Infrasonic Pulses from Anisotropic Inhomogeneities in the Middle Atmosphere;534
20.1.1.5;16.5 On the Potential for Studying Anisotropic Turbulence in the Atmosphere Using the Acoustic Sounding Method;540
20.1.1.6;16.6 Conclusions;546
20.1.2;References;547
21;LePichon_Ch17.pdf;550
21.1;Chapter 17;550
21.1.1;Numerical Methods to Model Infrasonic Propagation Through Realistic Specifications of the Atmosphere;550
21.1.1.1;17.1 Introduction;550
21.1.1.2;17.2 Mean State of the Atmosphere;551
21.1.1.3;17.3 Fine-Scale Structure of the Atmosphere;555
21.1.1.4;17.4 Sound Speed and Moving Medium;558
21.1.1.5;17.5 Refraction;559
21.1.1.6;17.6 Diffraction;561
21.1.1.7;17.7 Absorption and Dispersion;565
21.1.1.8;17.8 Terrain;568
21.1.1.9;17.9 Full-Wave Models;572
21.1.1.10;17.10 Normal Modes;572
21.1.1.11;17.11 Time-Domain Parabolic Equation;573
21.1.1.12;17.12 Finite Difference Time Domain;574
21.1.1.13;17.13 Nonlinear Effects;576
21.1.1.14;17.14 Spectral Methods;577
21.1.1.15;17.15 Summary;578
21.1.2;References;579
22;LePichon_Ch18.pdf;583
22.1;Chapter 18;583
22.1.1;Misty Picture: A Unique Experiment for the Interpretation of the Infrasound Propagation from Large Explosive Sources;583
22.1.1.1;18.1 Introduction;583
22.1.1.2;18.2 The Misty Picture Experiment;584
22.1.1.3;18.3 Infrasonic Wave Propagation Modeling;587
22.1.1.3.1;18.3.1 Source;587
22.1.1.3.2;18.3.2 Atmosphere;589
22.1.1.3.3;18.3.3 Geometry and Earth Surface Modeling;590
22.1.1.3.4;18.3.4 Propagation Models;591
22.1.1.4;18.4 Infrasound Propagation Interpretation;592
22.1.1.4.1;18.4.1 Propagation Results;592
22.1.1.4.2;18.4.2 Diffraction and Scattering in Shadow Zones;596
22.1.1.4.3;18.4.3 Discussion;597
22.1.1.5;18.5 Pressure Signature Analysis;598
22.1.1.5.1;18.5.1 Waveform Evolution During the Propagation;598
22.1.1.5.2;18.5.2 Nonlinearity and Atmospheric Absorption;601
22.1.1.5.3;18.5.3 Discussion;602
22.1.1.6;18.6 Conclusion;603
22.1.2;References;604
23;LePichon_Ch19.pdf;607
23.1;Chapter 19;607
23.1.1;Ground Truth Events: Assessing the Capability of Infrasound Networks Using High Resolution Data Analyses;607
23.1.1.1;19.1 Infrasound and Ground Truth;607
23.1.1.2;19.2 Ground Truth Data–A Historical Perspective;609
23.1.1.3;19.3 Process of Obtaining Ground Truth;611
23.1.1.4;19.4 Ground Truth Examples;613
23.1.1.5;19.5 Common Propagation Paths;617
23.1.1.6;19.6 A Case Study: The Buncefield Oil Depot Explosion;620
23.1.1.6.1;19.6.1 Observations;621
23.1.1.6.2;19.6.2 Analysis Results;622
23.1.1.7;19.7 Future Considerations;629
23.1.1.8;19.8 Summary;630
23.1.2;References;630
24;Part4.pdf;634
25;LePichon_Ch20.pdf;635
25.1;Chapter 20;635
25.1.1;Contribution of Infrasound Monitoring for Atmospheric Remote Sensing;635
25.1.1.1;20.1 Introduction;635
25.1.1.2;20.2 Monitoring Ocean Swells for Continuous Stratospheric Wind Measurements;637
25.1.1.2.1;20.2.1 Deciphering the Song of the Oceans;637
25.1.1.2.2;20.2.2 Infrasound Globally Driven by the Stratospheric General Circulation;638
25.1.1.3;20.3 Multiyear Validation of Upper-Wind Models;640
25.1.1.3.1;20.3.1 Context and Observations;640
25.1.1.3.2;20.3.2 Propagation Modeling;642
25.1.1.4;20.4 How Infrasound can Probe High-Altitude Winds?;644
25.1.1.4.1;20.4.1 Where Models Fail to Explain the Observations;644
25.1.1.4.2;20.4.2 Inversion of Infrasound Measurements;645
25.1.1.5;20.5 Concluding Remarks;647
25.1.1.6;Appendix;648
25.1.2;References;650
26;LePichon_Ch21.pdf;653
26.1;Chapter 21;653
26.1.1;Global Scale Monitoring of Acoustic and Gravity Waves for the Study of the Atmospheric Dynamics;653
26.1.1.1;21.1 Introduction;653
26.1.1.2;21.2 Atmospheric Waves and Dynamics of the Atmosphere;654
26.1.1.2.1;21.2.1 Properties of Acoustic and Gravity Waves;654
26.1.1.2.2;21.2.2 Impact of Acoustic and Gravity Waves on the Atmosphere;655
26.1.1.3;21.3 Parameters Measured with Infrasound Arrays;657
26.1.1.4;21.4 Monitoring of the Atmospheric Wave Guide;658
26.1.1.5;21.5 Monitoring of Wave Activity;661
26.1.1.5.1;21.5.1 Gravity Waves in Antarctica;661
26.1.1.5.2;21.5.2 Effects of Thunderstorm Activity;664
26.1.1.6;21.6 Summary and Conclusions;666
26.1.2;References;667
27;LePichon_Ch22.pdf;671
27.1;Chapter 22;671
27.1.1;Dynamics and Transport in the Middle Atmosphere Using Remote Sensing Techniques from Ground and Space;671
27.1.1.1;22.1 General Circulation;671
27.1.1.2;22.2 Atmospheric Dynamics;674
27.1.1.2.1;22.2.1 Extratropical Dynamics;674
27.1.1.2.1.1;22.2.1.1 Rossby Planetary Waves;674
27.1.1.2.1.2;22.2.1.2 Stratospheric Warmings;675
27.1.1.2.2;22.2.2 Tropical Dynamics;676
27.1.1.2.2.1;22.2.2.1 Tape Recorder Effect;676
27.1.1.2.2.2;22.2.2.2 Tropical Planetary Waves;676
27.1.1.2.2.3;22.2.2.3 Quasi-Biennial Oscillation;677
27.1.1.2.2.4;22.2.2.4 Semiannual Oscillation;678
27.1.1.2.3;22.2.3 Gravity Waves, Mesospheric Inversions, and Tides;679
27.1.1.2.3.1;22.2.3.1 Internal Gravity Waves;679
27.1.1.2.3.2;22.2.3.2 Mesospheric Inversions;679
27.1.1.2.3.3;22.2.3.3 Thermal Tides;680
27.1.1.3;22.3 Ground-Based Remote Sensing Measurements;681
27.1.1.3.1;22.3.1 Rayleigh and Raman Lidars;681
27.1.1.3.2;22.3.2 Rayleigh Doppler Wind Lidar;682
27.1.1.3.3;22.3.3 MST Radar;684
27.1.1.4;22.4 Remote Sensing from Space;684
27.1.1.4.1;22.4.1 Infrared and Microwave Radiometers;684
27.1.1.4.2;22.4.2 GNSS Radio-Occultation;685
27.1.1.4.3;22.4.3 ADM-AEOLUS Doppler Wind Lidar;686
27.1.1.5;22.5 Conclusion;686
27.1.2;References;686
28;LePichon_Ch23.pdf;690
28.1;Chapter 23;690
28.1.1;The Representation of Gravity Waves in Atmospheric General Circulation Models (GCMs);690
28.1.1.1;23.1 Introduction;690
28.1.1.2;23.2 The Different Parameterizations;693
28.1.1.2.1;23.2.1 Subgrid-Scale Orographic Drag;693
28.1.1.2.2;23.2.2 Orographic Lift;694
28.1.1.2.3;23.2.3 Nonorographic Waves;694
28.1.1.3;23.3 Impacts on GCMs Runs;695
28.1.1.3.1;23.3.1 Subgrid-Scale Orographic Parameterization and Lift;695
28.1.1.3.2;23.3.2 Nonorographic Gravity Waves Spectral Parameterization;697
28.1.1.3.2.1;23.3.2.1 Impacts in the midlatitudes;697
28.1.1.3.2.2;23.3.2.2 Impact on the Tropical Oscillations;698
28.1.1.4;23.4 Concluding Remarks;701
28.1.2;References;702
29;LePichon_Ch24.pdf;705
29.1;Chapter 24;705
29.1.1;Inversion of Infrasound Signals for Passive Atmospheric Remote Sensing;705
29.1.1.1;24.1 Introduction;705
29.1.1.2;24.2 Passive Acoustic Remote Sensing (Formalism);707
29.1.1.3;24.3 Synthetic Data;710
29.1.1.3.1;24.3.1 Forward Model;712
29.1.1.3.2;24.3.2 Atmospheric Specifications;713
29.1.1.3.3;24.3.3 Infrasound Observables;715
29.1.1.4;24.4 Inverse Procedures (Details);718
29.1.1.4.1;24.4.1 Atmospheric Basis Functions;718
29.1.1.4.2;24.4.2 Implementation and A Priori Information;720
29.1.1.4.3;24.4.3 Observational Weighting and Basis Set Truncation;721
29.1.1.4.4;24.4.4 Convergence;723
29.1.1.5;24.5 Results;724
29.1.1.6;24.6 Discussion;728
29.1.1.7;24.7 Conclusion;730
29.1.2;References;731
30;LePichon_Backmatter.pdf;736
31.1;Infrasound Monitoring for Atmospheric Studies;1
31.1.1;Preface;4
31.1.2;Foreword;6
31.1.3;Introduction;8
31.1.4;Contributors;13




