Lemaître / Whelan | Methods for Analyzing Large Neuroimaging Datasets | Buch | 978-1-0716-4259-7 | sack.de

Buch, Englisch, Band 218, 432 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1025 g

Reihe: Neuromethods

Lemaître / Whelan

Methods for Analyzing Large Neuroimaging Datasets


2025
ISBN: 978-1-0716-4259-7
Verlag: Springer US

Buch, Englisch, Band 218, 432 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1025 g

Reihe: Neuromethods

ISBN: 978-1-0716-4259-7
Verlag: Springer US


This Open Access volume explores the latest advancements and challenges in standardized methodologies, efficient code management, and scalable data processing of neuroimaging datasets. The chapters in this book are organized in four parts. Part One shows the researcher how to access and download large datasets, and how to compute at scale. Part Two covers best practices for working with large data, including how to build reproducible pipelines and how to use Git. Part Three looks at how to do structural and functional preprocessing data at scale, and Part Four describes various toolboxes for interrogating large neuroimaging datasets, including machine learning and deep learning approaches. In the series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory.

Authoritative and comprehensive, is a valuable resource that will help researchers obtain the practical knowledge necessary for conducting robust and reproducible analyses of large neuroimaging datasets.

Lemaître / Whelan Methods for Analyzing Large Neuroimaging Datasets jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Getting Started, Getting Data.- Neuroimaging Workflows in the Cloud.- Establishing a Reproducible and Sustainable Analysis Workflow.- Optimizing Your Reproducible Neuroimaging Workflow with Git.- End-to-End Processing of M/EEG Data with BIDS, HED, and EEGLAB.- Actionable Event Annotation and Analysis in fMRI: A Practical Guide to Event Handling.- Standardized Preprocessing in Neuroimaging: Enhancing Reliability and Reproducibility.- Structural MRI and Computational Anatomy.- Diffusion MRI Data Processing and Analysis: A Practical Guide with A Pipeline for Large-Scale Assessments of Dementia EEG Connectivity Across Multicentric Settings.- Brain Predictability Toolbox.- NBS-Predict: An Easy-To-Use Toolbox for Connectome-Based Machine Learning.- Normative Modeling with the Predictive Clinical Neuroscience Toolkit (PCNtoolkit).- Studying the Connectome at a Large Scale.- Deep Learning Classification Based on Raw MRI Images.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.