Leonardis / Ricci / Varol | Computer Vision ¿ ECCV 2024 | Buch | 978-3-031-72672-9 | sack.de

Buch, Englisch, Band 15067, 513 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Reihe: Lecture Notes in Computer Science

Leonardis / Ricci / Varol

Computer Vision ¿ ECCV 2024

18th European Conference, Milan, Italy, September 29¿October 4, 2024, Proceedings, Part IX
2024
ISBN: 978-3-031-72672-9
Verlag: Springer Nature Switzerland

18th European Conference, Milan, Italy, September 29¿October 4, 2024, Proceedings, Part IX

Buch, Englisch, Band 15067, 513 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-72672-9
Verlag: Springer Nature Switzerland


The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024.

The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.

Leonardis / Ricci / Varol Computer Vision ¿ ECCV 2024 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


UniINR: Event-guided Unified Rolling Shutter Correction, Deblurring, and Interpolation.- ReLoo: Reconstructing Humans Dressed in Loose Garments from Monocular Video in the Wild.- Weakly-supervised Camera Localization by Ground-to-satellite Image Registration.- Dataset Growth.- MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References.- Teaching Tailored to Talent: Adverse Weather Restoration via Prompt Pool and Depth-Anything Constraint.- MoE-DiffIR: Task-customized Diffusion Priors for Universal Compressed Image Restoration.- LEGO: Learning EGOcentric Action Frame Generation via Visual Instruction Tuning.- SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant.- Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation.- Listen to Look into the Future: Audio-Visual Egocentric Gaze Anticipation.- R^2-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations.- Self-supervised co-salient object detection via feature correspondences at multiple scales.- Differentiable Convex Polyhedra Optimization from Multi-view Images.- SlotLifter: Slot-guided Feature Lifting for Learning Object-Centric Radiance Fields.- SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding.- ADMap: Anti-disturbance Framework for Vectorized HD Map Construction.- GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting.- PanoVOS: Bridging Non-panoramic and Panoramic Views with Transformer for Video Segmentation.- Evaluating Text-to-Visual Generation with Image-to-Text Generation.- SENC: Handling Self-collision in Neural Cloth Simulation.- HybridBooth: Hybrid Prompt Inversion for Efficient Subject-Driven Generation.- PartCraft: Crafting Creative Objects by Parts.- GeometrySticker: Enabling Ownership Claim of Recolorized Neural Radiance Fields.- PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation.- FineMatch: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction.- CrossScore: A Multi-View Approach to Image Evaluation and Scoring.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.