Leonardis / Ricci / Varol | Computer Vision ¿ ECCV 2024 | Buch | 978-3-031-72683-5 | sack.de

Buch, Englisch, Band 15068, 497 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 873 g

Reihe: Lecture Notes in Computer Science

Leonardis / Ricci / Varol

Computer Vision ¿ ECCV 2024

18th European Conference, Milan, Italy, September 29¿October 4, 2024, Proceedings, Part X
2024
ISBN: 978-3-031-72683-5
Verlag: Springer Nature Switzerland

18th European Conference, Milan, Italy, September 29¿October 4, 2024, Proceedings, Part X

Buch, Englisch, Band 15068, 497 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 873 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-72683-5
Verlag: Springer Nature Switzerland


The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024.

The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.

Leonardis / Ricci / Varol Computer Vision ¿ ECCV 2024 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Modeling and Driving Human Body Soundfields through Acoustic Primitives.- m&m’s: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks.- Label-anticipated Event Disentanglement for Audio-Visual Video Parsing.- High-Fidelity 3D Textured Shapes Generation by Sparse Encoding and Adversarial Decoding.- Semi-Supervised Video Desnowing Network via Temporal Decoupling Experts and Distribution-Driven Contrastive Regularization.- I-MedSAM: Implicit Medical Image Segmentation with Segment Anything.- ReMamber: Referring Image Segmentation with Mamba Twister.- TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting.- CAT: Enhancing Multimodal Large Language Model to Answer Questions in Dynamic Audio-Visual Scenarios.- Segmentation-guided Layer-wise Image Vectorization with Gradient Fills.- Implicit Style-Content Separation using B-LoRA.- OpenPSG: Open-set Panoptic Scene Graph Generation via Large Multimodal Models.- ActionVOS: Actions as Prompts for Video Object Segmentation.- FALIP: Visual Prompt as Foveal Attention Boosts CLIP Zero-Shot Performance.- U-COPE: Taking a Further Step to Universal 9D Category-level Object Pose Estimation.- Integrating Markov Blanket Discovery into Causal Representation Learning for Domain Generalization.- Rotary Position Embedding for Vision Transformer.- Local All-Pair Correspondence for Point Tracking.- MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection.- ReALFRED: An Embodied Instruction Following Benchmark in Photo-Realistic Environments.- S^3D-NeRF: Single-Shot Speech-Driven Neural Radiance Field for High Fidelity Talking Head Synthesis.- ActionSwitch: Class-agnostic Detection of Simultaneous Actions in Streaming Videos.- Hierarchically Structured Neural Bones for Reconstructing Animatable Objects from Casual Videos.- PQ-SAM: Post-training Quantization for Segment Anything Model.- CPM: Class-conditional Prompting Machine for Audio-visual Segmentation.- Optimizing Factorized Encoder Models: Time and Memory Reduction for Scalable and Efficient Action Recognition.- DVLO: Deep Visual-LiDAR Odometry with Local-to-Global Feature Fusion and Bi-Directional Structure Alignment.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.