Leondes | Intelligent Knowledge-Based Systems | E-Book | www.sack.de
E-Book

E-Book, Englisch, 1895 Seiten

Leondes Intelligent Knowledge-Based Systems

Business and Technology in the New Millennium
1. Auflage 2010
ISBN: 978-1-4020-7829-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Business and Technology in the New Millennium

E-Book, Englisch, 1895 Seiten

ISBN: 978-1-4020-7829-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This five-volume set clearly manifests the great significance of these key technologies for the new economies of the new millennium. The discussions provide a wealth of practical ideas intended to foster innovation in thought and, consequently, in the further development of technology. Together, they comprise a significant and uniquely comprehensive reference source for research workers, practitioners, computer scientists, academics, students, and others on the international scene for years to come.

Leondes Intelligent Knowledge-Based Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Title Page
;2
2;Copyright Page
;3
3;Table of contents
;4
4;FOREWORD;6
5;PREFACE;8
6;CONTRIBUTORS;11
7;Title Page
;416
8;Copyright Page
;417
9;Table of contents
;418
10;FOREWORD;420
11;PREFACE;422
12;CONTRIBUTORS;425
13;Title Page
;804
14;Copyright Page
;805
15;Table of contents;806
16;FOREWORD;808
17;PREFACE;810
18;CONTRIBUTORS;813
19;Title Page
;1153
20;Copyright Page
;1154
21;Table of contents
;1155
22;FOREWORD;1157
23;PREFACE;1159
24;CONTRIBUTORS;1162
25;Title Page
;1624
26;Copyright Page
;1625
27;Table of contents
;1626
28;FOREWORD;1628
29;PREFACE;1630
30;CONTRIBUTORS;1633
31;VOLUME I. KNOWLEDGE-BASED SYSTEMS;31
32;PLATFORM-BASED PRODUCT DESIGN AND DEVELOPMENT: KNOWLEDGE SUPPORT STRATEGY AND IMPLEMENTATION
;32
32.1;1. INTRODUCTION;32
32.2;2. LITERATURE REVIEW;33
32.3;3. PLATFORM-BASED PRODUCT DESIGN AND DEVELOPMENT;36
32.4;4. PRODUCT PLATFORM AND PRODUCT FAMILY MODELING;38
32.4.1;4.1. Product family architecture modeling;38
32.4.2;4.2. Product family evolution representation;39
32.4.3;4.3. Product family generation;41
32.4.4;4.4. Product family evaluation for customization;42
32.5;5. MODULE-BASED PRODUCT FAMILYDESIGN PROCESS;44
32.6;6. KNOWLEDGE SUPPORT FRAMEWORK FOR MODULAR PRODUCT FAMILY DESIGN
;48
32.6.1;6.1. Knowledge support scheme, challenges and key issues;48
32.6.2;6.2. Product family design knowledge modeling and support;51
32.6.2.1;6.2.1. Product family design knowledge modeling issues
;51
32.6.2.2;6.2.2. Knowledge modeling /representation for product family design;54
32.7;7. KNOWLEDGE INTENSIVE SUPPORT SYSTEM FOR PRODUCT FAMILY DESIGN
;57
32.8;8. SUMMARY AND FUTURE WORK;61
32.9;REFERENCES;61
33;KNOWLEDGE MANAGEMENT SYSTEMS IN CONTINUOUS PRODUCT INNOVATION
;65
33.1;1. INTRODUCTION;65
33.2;2. KNOWLEDGE AND KNOWLEDGE MANAGEMENT;67
33.2.1;2.1. The concept of knowledge in management literature;67
33.2.2;2.2. Defining a knowledge management system;69
33.3;3. LITERATURE REVIEW;71
33.3.1;3.1. Main streams in literature;73
33.3.2;3.2. The literature evolutive trend: towards KM configurations;78
33.4;4. THE INVESTIGATION FRAMEWORK;80
33.5;5. THE RESEARCH METHODOLOGY;83
33.6;6. RESULTS;86
33.7;7. IMPLICATIONS FOR MANAGERIAL ACTION AND FUTURE RESEARCH;91
33.8;REFERENCES;92
34;KNOWLEDGE-BASED MEASUREMENT OF ENTERPRISE AGILITY;96
34.1;1. INTRODUCTION;96
34.2;2. MANAGING AN ADAPTIVE INFRASTRUCTURE;98
34.3;3. AGILITY MODELING AND MEASUREMENT FUNDAMENTALS;99
34.3.1;3.1. Dimensions of agility;100
34.4;4. MODELING OF AGILITY INFRASTRUCTURES;103
34.4.1;4.1. Production infrastructure;103
34.4.2;4.2. Market infrastructure;104
34.4.3;4.3. People infrastructure;104
34.4.4;4.4. Information infrastructure;105
34.4.5;4.5. Discussion;105
34.5;5. AN EXAMPLE;107
34.6;6. CONCLUDING REMARKS;110
34.7;REFERENCES;111
35;KNOWLEDGE-BASED SYSTEMS TECHNOLOGY IN THE MAKE OR BUY DECISION IN MANUFACTURING STRATEGY
;112
35.1;1. INTRODUCTION;112
35.2;THE MAKE OR BUY DECISION;113
35.2.1;(i) No Formal Methodfor Evaluating the Decision;113
35.2.2;(ii) Inaccurate Costing Systems;114
35.2.3;(iii) The Competitive Implications of the Decision;114
35.3;A DESCRIPTION OF THE MAKE OR BUY MODEL;114
35.3.1;Stage 1-Identification of Performance Categories
;116
35.3.2;Stage2-An Analysis of the Technical Capability Categories;118
35.3.3;Stage 3-Comparison of Retrieved Internal and External Technical Capability Profiles
;118
35.3.4;Stage 4-An Analysis ofthe Suppliers' Organisations;118
35.3.5;Stage 5-Total Acquisition Cost Analysis;119
35.4;THE MAKE OR BUY SYSTEM;119
35.5;KNOWLEDGE BASED SYSTMS (KBS) AND CASE-BASED REASONING (CBR);119
35.6;THE REQUIREMENTS;121
35.7;SYSTEM DEVELOPMENT;122
35.7.1;Stage 1-Peiformance Criteria Identification and Weighting
;122
35.7.1.1;1. Technical Capability Categories;122
35.7.1.2;2. Suppliers Organisation Categories
;123
35.7.2;Stage 2-Technical Capability Stage;123
35.7.3;Stage 3-Comparison of Retrieved Internal and External Technical Capability Profiles
;128
35.7.4;Stage 4-An Analysis of the Suppliers' Organisations
;130
35.8;EVALUATION;133
35.9;FURTHER ENHANCEMENTS;135
35.9.1;Dynamic performance analysis;135
35.9.2;A consultancy tool;135
35.9.3;Application of AI techniques;135
35.10;CONCLUSION;136
35.11;REFERENCES;137
36;INTELLIGENT INTERNET INFORMATION SYSTEMS IN KNOWLEDGE ACQUISITION: TECHNIQUES AND APPLICATIONS
;139
36.1;1. INTRODUCTION;139
36.2;2. RELATED WORK;140
36.2.1;2.1. The Web;140
36.2.2;2.2. Information retrieval;142
36.2.3;2.3. Hyperlink analysis;144
36.2.4;2.4. Information extraction;145
36.2.5;2.5. Data mining and machine learning;145
36.2.6;2.6. Document categorization;148
36.2.7;2.7. Web mining;149
36.2.8;2.8. Intelligent web agent;151
36.3;3. THE I3 SYSTEM;151
36.3.1;3.1. The architecture of the I3 system
;151
36.3.2;3.2. Semantic issues of the I3 system
;152
36.4;4. I3 WEB ANALYZER
;154
36.4.1;4.1. Web crawler and document parser;155
36.4.2;4.2. Linguistic detector;156
36.4.3;4.3. Structural analyzer;156
36.4.4;4.4. Content analyzer;157
36.4.5;4.5. Summary of I3WA;158
36.5;5. I3 METADATA EXTRACTOR;158
36.6;6. 13 KNOWLEDGE LEARNER;161
36.6.1;6.1. The ACIRD system;161
36.6.2;6.2. Mining term associations;161
36.7;7. I3 APPLICATIONS
;163
36.8;REFERENCES;164
37;AGGREGATOR: A KNOWLEDGE BASED COMPARISON CHART BUILDER FOR eSHOPPING
;169
37.1;1. INTRODUCTION;169
37.2;2. RELATED WORK;172
37.3;3. WRAPPERS AS CONCEPTUAL GRAPHS;174
37.3.1;3.1. Conceptual graphs background;174
37.3.2;3.2. Modeling and training wrappers with CGs;176
37.3.3;3.3. Reusing CG-wrappers;180
37.4;4. COMPARISON CHART BUILDING WITH CG-WRAPPERS;181
37.4.1;4.1. Locating product specification pages;181
37.4.2;4.2. Collecting and merging specification information;182
37.5;5. A FRAMEWORK FOR INFORMATION EXTRACTION WITH CG-WRAPPERS;185
37.5.1;5.1. System architecture;185
37.5.2;5.2. Case study;188
37.6;6. CONCLUSIONS AND FUTURE WORK;190
37.7;REFERENCES;191
38;IMPACT OF THE INTELLIGENT AGENT PARADIGM ON KNOWLEDGE MANAGEMENT
;193
38.1;1. INTRODUCTION;193
38.2;2. PARADIGM SHIFT: FROM DATA AND INFORMATION MANAGEMENT TO KNOWLEDGE MANAGEMENT
;196
38.3;3. KNOWLEDGE MANAGEMENT: DEFINITIONS AND ARCHITECTURE;198
38.4;4. KNOWLEDGE MANAGEMENT SUPPORT;202
38.5;5. INTELLIGENT AGENTS AND MULTIAGENT SYSTEMS;204
38.6;6. KNOWLEDGE TYPOLOGIES;209
38.6.1;6.1. Notion of Knowledge and Knowledge Possessors;210
38.6.2;6.2. Types of knowledge;213
38.6.3;6.3. Sources of knowledge;215
38.7;7. ORGANIZATIONS AS COMMUNITIES OF AGENTS AND PASSIVE OBJECTS;218
38.8;8. ORGANIZATIONS AS INTELLIGENT AGENTS;220
38.9;9. ORGANIZATIONS AS MULTIAGENT AND KNOWLEDGE MANAGEMENT SYSTEMS
;223
38.9.1;9.1. Intelligent agents for OKMS "Engine Room";227
38.9.2;9.2. Agents that provide communications;229
38.9.3;9.3. Personal agents;229
38.10;10. CONCLUSIONS;231
38.11;ACKNOWLEDGMENTS;232
38.12;REFERENCES;232
39;METHODS OF BUILDING KNOWLEDGE-BASED SYSTEMS APPLIED IN SOFTWARE PROJECT MANAGEMENT
;236
39.1;INTRODUCTION;236
39.2;1. PROBLEMS OF MODELLING SPM;237
39.2.1;1.1. Expert knowledge of project management;237
39.2.2;1.2. Methods of supporting management processes
;238
39.2.3;1.3. Description of project teams;241
39.2.4;1.4. Models for assessing team and project processes;243
39.3;2. NEW POSSIBILITIES FOR CREATING THE SPM MODEL;248
39.3.1;2.1. Use of modelling and simulation theories;250
39.3.2;2.2. Application of fuzzy set theory;251
39.3.3;2.3. Application of elements of fuzzy regulator theory;254
39.4;3. EXAMPLE OF BUILDING A FUZZY SPM MODEL;256
39.4.1;3.1. The concept of model construction;257
39.4.2;3.2. Construction of the model;264
39.4.2.1;3.2.1. Fuzzy Models of Knowledge- Based System for Software Project Management
;264
39.4.2.2;3.2.2. Hierarchical model;264
39.4.2.3;3.2.3. Structural model;266
39.4.2.4;3.2.4. Integrated model
;266
39.4.2.5;3.2.5. Tuning of the Fuzzy Model;269
39.4.2.6;3.2.6. Adaptation of the model to the needs of newprojects;269
39.4.2.6.1;3.2.6.1. THE SPM-RFM MODEL AS A SUPPORT FOR SOFTWARE PROJECT MANAGEMENT.;269
39.5;4. ASSESSMENT OF EXISTING SOLUTIONS;271
39.6;REFERENCES;271
40;SECURITY TECHNOLOGIES TO GUARANTEE SAFE BUSINESS PROCESSES IN SMART ORGANIZATIONS
;275
40.1;1. INTRODUCTION;275
40.2;2. SMART ORGANIZATIONS-ARE THEY THE FUTURE?;277
40.2.1;2.1. Main characteristics of Smart Organizations;277
40.2.1.1;2.1.1. Definition of Smart Organization;277
40.2.1.2;2.1.2. Life cycle of networked organizations;278
40.2.1.3;2.1.3. Human role in smart organization;280
40.2.2;2.2. Organizational form;280
40.2.2.1;2.2.1. Main characteristics of VE;280
40.2.2.2;2.2.2. Importance of safe communication in VE;282
40.2.3;2.3. Knowledge technologies and applications;283
40.2.3.1;2.3. 1. Knowledge technologies;283
40.2.3.1.1;2.3.1.1. ARTIFICIAL NEURAL NETWORKS.
;284
40.2.3.1.2;2.3.1.2. ANT ALGORITHMS AND SWARM INTELLIGENCE.;284
40.2.3.1.3;2.3.1.3. INTELLIGENT AGENTS.;285
40.2.3.1.4;2.3.1.4. KNOWLEDGE SHARING.;286
40.2.3.2;2.3.2. Knowledge management;286
40.2.4;2.4. Network technologies for smart organizations;287
40.2.4.1;2.4.1. Trends in information technology;287
40.2.4.2;2.4.2. Wired network technology;288
40.2.4.3;2.4.3. Wi-Fi (Wireless Fidelity) technology;289
40.2.4.4;2.4.4. Mobile technology;290
40.2.4.5;2.4.5. Powerline communications;292
40.2.4.6;2.4.6. The Grid computing
;293
40.3;3.
BUSINESS PROCESSES;294
40.3.1;3.1. The content of business processes;294
40.3.2;3.2. Relation between BPR & information and communication technology;295
40.4;4. SECURITY TECHNOLOGIES;296
40.4.1;4.1. Types and trends of cyber crimes;296
40.4.2;4.2. Computer system and network security;298
40.4.3;4.3. Role of trust;300
40.4.4;4.4. Security services and mechanisms;301
40.4.5;4.5. Tools, methods and techniques for security;302
40.4.5.1;4.5.1. Achieving confidentiality;302
40.4.5.2;4.5.2. Security architectures;302
40.4.5.3;4.5.3. Firewalls;302
40.4.5.4;4.5.4. Virus defense;303
40.4.5.5;4.5.5. Identification of persons
;303
40.4.5.6;4.5.6. Smart cards;304
40.4.5.7;4.5.7. Personal trusted device;304
40.4.6;4.6. Application of security technologies in networks;305
40.4.6.1;4.6.1. Wired network security;305
40.4.6.2;4.6.2. Security technoloyies for wireless communication;306
40.4.6.3;4.6.3. Mobile security;308
40.4.6.4;4.6.4. Security issues in PLC;310
40.4.6.5;4.6.5. Security in the Grid;311
40.5;5. SECURITY APPLICATIONS IN SMART ORGANIZATIONS;311
40.5.1;5.1. Security in distributed environments;311
40.5.2;5.2. Human aspects of security in smart organizations;312
40.5.3;5.3. Application of security in the life-cycle phases;313
40.6;6. CONCLUSIONS;314
40.7;REFERENCES;315
41;BUSINESS PROCESS MODELLING AND ITS APPLICATIONS IN THE BUSINESS ENVIRONMENT
;317
41.1;1. INTRODUCTION;317
41.2;2. BUSINESS PROCESS MODELLING;319
41.2.1;2.1. The model of an artificial system;319
41.2.2;2.2. Business processes and business process modelling;320
41.2.2.1;2.2.1. Business process;320
41.2.2.2;2.2.2. Business process model;320
41.2.2.2.1;2.2.2.1. WHAT IS A MODEL?;320
41.2.2.2.2;2.2.2.2. BUSINESS PROCESS MODELS AS SPECIFIC TYPES OF ENTERPRISE MODELS.;322
41.2.2.3;2.2.3. Categories of business process models and business process types;323
41.2.2.3.1;2.2.3.1. CATEGORIES OF BUSINESS PROCESS MODELS.;323
41.2.2.3.2;2.2.3.2. BUSINESS PROCESS TYPES.;324
41.2.3;2.3. Generalised enterprise reference architecture and methodology (GERAM);325
41.2.3.1;2.3.1. GERAM framework
;325
41.2.3.2;2.3.2. Generalised enterprise reference architecture (GERA);327
41.2.3.3;2.3.3. Business process modelling languages and tools;328
41.2.3.4;2.3.4. Enterprise reference models;331
41.2.4;2.4. Business process modelling principles;331
41.2.4.1;2.4.1. Process decomposition;331
41.2.4.2;2.4.2. The granularity (depth) of process models
;332
41.2.4.3;2.4.3. Modelling approach
;332
41.2.5;2.5. CIMOSA process modelling language;333
41.2.6;2.6. Workflow management;334
41.2.6.1;2.6.1. Abstraction of process management
;334
41.2.6.2;2.6.2. Architecture;335
41.2.6.3;2.6.3. Design principles and issues;336
41.2.6.4;2.6.4. Workflow from a data perspective
;336
41.3;3. WHAT ISO 9000:2000 STANDARD REQUIREMENTS MUST BUSINESS PROCESS MODELS SATISFY?
;338
41.3.1;3.1. Business process modelling related requirements of the ISO 9000:2000 standards
;339
41.3.2;3.2. Business process interactions;343
41.3.3;3.3. Product realisation and support processes;346
41.3.4;3.4. From business process modelling to enterprise modelling;348
41.3.4.1;3.4.1. Organisational view related standard requirements
;348
41.3.4.2;3.4.2. Resource view related standard requirements;350
41.3.4.3;3.4.3. Information view related standard requirements;352
41.3.5;3.5. The ISO 9000:2000 and business process reference models;354
41.4;4. BUSINESS PROCESS MODELLING IN BUSINESS PROCESS REENGINEERING;355
41.4.1;4.1. Ten-step approach to BPR;356
41.4.2;4.2. How to develop an AS-IS process model;357
41.4.3;4.3. Use documented best practice as an input to the BPR process;359
41.5;5. BUSINESS PROCESS MODELLING AND KNOWLEDGE MANAGEMENT;359
41.5.1;5.1. What is knowledge?;360
41.5.2;5.2. Need for knowledge management;361
41.5.3;5.3. The nature of knowledge and its sharing;362
41.5.4;5.4 . The knowledge process and knowledge resources;364
41.5.5;5.5. Business process modelling and knowledge management;366
41.5.6;5.6. The knowledge life-cycle model;367
41.6;6. CONCLUSION;371
41.7;REFERENCES;372
42;KNOWLEDGE BASED SYSTEMS TECHNOLOGY AND APPLICATIONS IN IMAGE RETRIEVAL
;375
42.1;1. INTRODUCTION;375
42.2;2. KNOWLEDGE REPRESENTATION AND DESCRIPTION LOGICS;376
42.3;3. RELATED WORK;378
42.3.1;3.1. Feature-based approaches;378
42.3.2;3.2. Approaches based on spatial constraints;379
42.3.3;3.3. Logic-based approaches;380
42.4;4. PROPOSED KNOWLEDGE BASED APPROACH;381
42.4.1;4.1. Syntax;381
42.4.2;4.2. Semantics;382
42.5;5. REASONING AND RETRIEVAL;390
42.5.1;5.1. Exact reasoning on images and descriptions;391
42.5.2;5.2. Approximate recognition;397
42.5.2.1;5.2.1. Spatial similarity
;399
42.5.2.2;5.2.2. Rotation similarity;401
42.5.2.3;5.2.3. Scale similarity;402
42.6;6. REPRESENTING SHAPES, OBJECTS AND IMAGES;404
42.6.1;6.1. Image features;404
42.6.2;6.2. Similarity computation;405
42.7;7. PROTOTYPE SYSTEM;407
42.7.1;7.1. Knowledge base management;408
42.8;8. DISCUSSION;411
42.9;REFERENCES;411
43;VOLUME II. INFORMATION TECHNOLOGY;445
44;TECHNIQUES IN INTEGRATED DEVELOPMENT AND IMPLEMENTATION OF ENTERPRISE INFORMATION SYSTEMS
;446
44.1;1. INTRODUCTION TO THE INTEGRATED METHODOLOGY FOR ENTERPRISE INFORMATION SYSTEMS;446
44.1.1;1.1. Development of information systems;447
44.1.2;1.2. Previous research;447
44.1.3;1.3. Overview of the integrated methodology for enterprise information systems
;448
44.2;2. TECHNIQUES OF INFORMATION STRATEGIC PLANNING;452
44.2.1;2.1. Overview;452
44.2.2;2.2. Previous researches;452
44.2.3;2.3. Information Strategic Planning Methodology (ISPM);453
44.2.4;2.4. Framework for evaluation of ISP;454
44.3;3. TECHNIQUES FOR THE EVALUATION OF INDUSTRIAL INFORMATION SYSTEMS (EIII)
;455
44.3.1;3.1. Overview;455
44.3.2;3.2. Previous researches;455
44.3.3;3.3. The improvement model of IS performance
;458
44.4;4. TECHNIQUES OF IS ECONOMIC JUSTIFICATION AND MEASUREMENT;460
44.4.1;4.1. Overview;460
44.4.2;4.2. Previous researches;461
44.4.3;4.3. Framework for economic justification and measurement system (EJMS);461
44.5;5. OTHER TECHNIQUES;464
44.5.1;5.1. Techniques of requirements analysis;464
44.5.2;5.2. UMT (Unified Modeling Tools) and repository;466
44.5.3;5.3. S3IE (Support Systems for Solution Introduction and Evaluation);468
44.6;6. FURTHER WORKS;468
44.7;REFERENCES;468
45;INFORMATION SYSTEMS FRAMEWORKS AND THEIR APPLICATIONS IN MANUFACTURING AND SUPPLY CHAIN SYSTEMS
;470
45.1;1. INTRODUCTION;470
45.2;2. INFORMATION SYSTEMS USE IN THE MANUFACTURING INDUSTRY;471
45.3;3. INFORMATION SYSTEMS EVOLUTION IN MANUFACTURING;472
45.3.1;3.1. Infrastructure as an element of information systems in manufacturing;474
45.4;4. ELECTRONIC COMMERCE AND MANUFACTURING INFORMATION SYSTEMS
;476
45.5;5. VIRTUAL ORGANISATIONS AND MANUFACTURING INFORMATION SYSTEMS
;477
45.6;6. PARADIGMS SHIFTS IN MANUFACTURING;478
45.6.1;6.1. IT and information systems for mass customisation;479
45.7;7. DEVELOPMENT OF INFORMATION SYSTEMS IN MANUFACTURING;480
45.8;8. EXAMPLES AND HIGHLIGHTS OF INFORMATION SYSTEMS DEVELOPMENTS IN MANUFACTURING
;483
45.9;9. A BROADER SCOPE OF INFORMATION SYSTEMS IN MANUFACTURING;486
45.9.1;9.1. Information systems role in improving manufacturing organisations performance
;486
45.10;10. INFORMATION SYSTEMS ENTERPRISE-WIDE SUPPORT: AN EXAMPLE;488
45.10.1;10.1. Information dependency and intensity;489
45.10.2;10.2. Information flow and operation of the supply chain;491
45.10.3;10.3. Analysis of information accuracy;496
45.11;11. ENSURING A POSITIVE CONTRIBUTION OF INFORMATION SYSTEMS TO THE ENTERPRISE
;499
45.11.1;1. Development of enhanced manufacturing operations based on a sound business strategy;500
45.11.2;2. Definition of an IT strategy to support the business strategy;500
45.11.3;3. Implement an IT strategy to lead the company once it has been possible to improve its manufacturing operations
;500
45.12;12. CONCLUSIONS;503
45.13;REFERENCES;504
46;MODELLING TECHNIQUES IN INTEGRATED OPERATIONS AND INFORMATION SYSTEMS IN MANUFACTURING SYSTEMS
;507
46.1;1. INTRODUCTION;507
46.1.1;1.1. Review of integrated modelling simulation methods or tools for manufacturing systems analysis, design and performance evaluation
;509
46.1.2;1.2. Research objectives;512
46.2;2. THE PCBA SYSTEM;513
46.3;3. SIMULATION TOOLS USED;515
46.3.1;3.1. Operational system model development based on ARENA 3.0;516
46.3.1.1;3.1.1. Operational system model development
;517
46.3.1.2;3.1.2. Experimentalframe developmentfor ARENA models;521
46.3.1.2.1;3.1.2.1. INPUT DATA ACQUISITION AND ANALYSISFOR STOCHASTIC SYSTEM MODELS.;525
46.3.1.3;3.1.3. Simulation data analysis
;527
46.3.2;3.2. Communication system model development based on COMNET III;528
46.3.2.1;3.2.1. Nctwore description and modelling constructions;528
46.3.2.1.1;3.2.1.1. MODELLING OF NETWOHK TOPOLOG IES.;530
46.3.2.1.2;3.2.1.2. NETWORK TRAFFIC AND WORKLOAD.
;533
46.3.2.2;3.2.2. Network simulation;536
46.4;4. INTEGRATED MODEL APPROACH;536
46.4.1;4.1. Establishment of an integrated model;536
46.4.1.1;4.1.1. Operational system;540
46.4.1.2;4.1.2. Information processing system
;543
46.5;5. SIMULATION RESULTS, ANALYSIS AND DISCUSSION;547
46.5.1;5.1. Operational system's aspects
;549
46.5.1.1;5.1.1. Line-balancing and collecting critical data
;550
46.5.1.2;5.1.2. Using animated simulation to investigate system performances
;551
46.5.2;5.2. Information system's aspects;552
46.5.2.1;5.2.1. Channel utilisation (%)
;554
46.5.2.2;5.2.2. Maximum message delay (ms)
;555
46.5.2.3;5.2.3. Comparative dynamic performance of LANs for the PCBA system
;556
46.5.2.3.1;5.2.3.1. CHANNEL UTILISATION (%) AND MAXIMUM MESSAGE DELAY (MS) VS TRANSMISSION RATES (MBPS) .
;557
46.5.2.3.2;5.2.3.2. CHANNEL UTILISATION (%) AND MAXIMUM MESSAGE DELAY (MS) VS MAXIMUM MESSAGE SIZES (Kb).
;558
46.6;6. DISCUSSION AND CONCLUSION;561
46.7;REFERENCES;564
47;TECHNIQUES AND ANALYSES OF SEQUENTIAL AND CONCURRENT PRODUCT DEVELOPMENT PROCESSES
;566
47.1;1. INTRODUCTION;566
47.2;2. SEQUENTIAL ENGINEERING;567
47.2.1;2.1. Sequential product development process
;567
47.2.2;2.2. Characte ristics of sequential engineering;569
47.3;3. CONCURRENT ENGINEERING;569
47.3.1;3.1. Concurrent product development process;569
47.3.1.1;3.1.1. Data transfer between activities in concurrent product development process
;570
47.3.1.2;3.1.2. Loops of concurrent product development process
;570
47.3.1.3;3.1.3. Team work;574
47.3.1.3.1;3.1.3.1. TEAM STRUCTURE IN CONCURRENT PRODUCT DEVELOPMENT PROCESS.;574
47.3.1.3.2;3.1.3.2. TEAMS IN BIG COMPANY.;576
47.3.1.3.3;3.1.3.3. TEAM STRUCTURE IN SMEs.;577
47.3.2;3.2. Organisational structures;581
47.3.2.1;3.2.1. Functional organisational structure;581
47.3.2.2;3.2.2. Project organisational structure
;583
47.3.2.3;3.2.3. Matrix organisational structure
;584
47.3.2.4;3.2.4. Organisational structure of team work in SME
;585
47.3.3;3.3. Goals and tools for support of concurrent product development process;588
47.3.3.1;a.) Considerably shorter newproduct development time;588
47.3.3.2;b.) Reduced newproduct development costs;588
47.3.3.3;c.) Better quality of newproducts regarding customer requirements;588
47.3.3.4;3.3.1. Quality Functions Deployment (QFD);589
47.3.3.4.1;3.3.1.1. HOUSE OF QUALITY STRUCTURE.;591
47.3.3.4.2;3.3.1.2. STEPS IN CONSTRUCTING THE HOUSE OF QUALITY.;592
47.3.3.4.3;3.3.1.3. EXTENDING THE HOUSE OF QUALITY.;595
47.3.3.5;3.3.2. value analysis;597
47.3.3.6;3.3.3. Failure Mode and Effects Analysis (FMEA)
;601
47.4;4. SAMPLE CASE OF INTRODUCTION OF CONCURRENT ENGINEERING IN AN SME
;606
47.4.1;4.1. Building a house of quality;607
47.4.2;4.2. Project of concurrent product development process;609
47.4.2.1;4.2.1. Goals of the project and project team
;609
47.4.2.2;4.2.4. Time and structural plan of the project
;610
47.5;5. CONCLUSION;618
47.6;REFERENCES;619
48;DESIGN AND MODELING METHODS FOR COMPONENTS MADE OF MULTI-HETEROGENEOUS MATERIALS IN HIGH-TECH APPLICATIONS
;620
48.1;1. INTRODUCTION;620
48.2;2. DESIGN METHOD FOR THE COMPONENTS MADE OF MULTI HETEROGENEOUS MATERIALS
;623
48.2.1;2.1. Design procedure;623
48.2.2;2.2. Material design;627
48.2.3;2.3. How to determine the optimal material properties needed in different regions
;630
48.2.4;2.4. How to select material constituent composition and microstructure;634
48.2.4.1;2.4.1. Select material constituent compositions from the database of material constituent composition;634
48.2.4.2;2.4.2. Select material murostructurcsirom the database of material microstructure;636
48.2.5;2.5. How to generate two material region sets;636
48.2.5.1;(1) Encode decision variables;637
48.2.5.2;(2) Determine the size of population;637
48.2.5.3;(3) Evaluation;637
48.2.5.4;(4) Selection;639
48.2.5.5;(5) Crossover operation;639
48.2.5.6;(6) Mutation;641
48.2.5.7;(7) Reproduction;642
48.2.5.8;(8) Stop criterion;642
48.2.5.9;(9) Construct the regions for different material constituent compositions and material microstructures
;642
48.2.6;2.6. An example of multi heterogeneous component design;643
48.2.6.1;(1) Requirements for material design;643
48.2.6.2;(2) Generate material regions;644
48.2.6.3;(3) Create optimization model;644
48.2.6.4;(4) Sensitivity analysis of material properties;644
48.2.6.5;(5) Search for the optimal material property vector of different regions of the flywheel
;644
48.2.6.6;(6) Select material constituent composition and microstructure for each region;645
48.3;3. CAD MODELING METHOD FOR THE COMPONENTS MADE OF MULTI HETEROGENEOUS MATERIALS
;646
48.3.1;3.1. Analyses of the requirements for representing the components made of heterogeneous materials
;646
48.3.2;3.2. Unified CAD modeling for th e compo nent made of heterogeneous materials
;648
48.3.3;3.3. Material constituent composition models
;650
48.3.4;3.4. Material microstructure models;651
48.3.4.1;3.4.1. Material microstructure modelsfor composite materials (R)
;651
48.3.4.2;3.4.2. Material microstructure models for heterogeneous materials with a periodic microstructure (P)
;652
48.3.5;3.5. Main model for integrating the two types of sub-models;656
48.3.6;3.6. An example of modeling
;657
48.4;4. FINITE ELEMENT ANALYSIS BASED ON THE MODEL;661
48.5;5. SUMMARY;663
48.6;ACKNOWLEDGEMENTS;664
48.7;REFERENCES;665
49;QUALITY AND COST OF DATA WAREHOUSE VIEWS1
;667
49.1;1. INTRODUCTION;667
49.2;2. NON-EQUIVALENT QUERY REWRITINGS;669
49.3;3. EFFICIENCY MODEL: QUALITY OF A QUERY REWRITING;670
49.3.1;3.1. Information preservation in rewritings;670
49.3.2;3.2. Information preservation on the view interface;672
49.3.2.1;3.2.1. Dispensable and replacable attributes;672
49.3.3;3.3. Information preservation on view extent;674
49.3.4;3.4. Metric of quality: Degree of Divergence (D,D)
;675
49.3.4.1;3.4.1. Degree of divergence on the query interface (DVattr(Vi))
;675
49.3.4.2;3.4.2. Degree of divergence on the query extent (DDext (Vi))
;676
49.3.4.3;3.4.3. Total degree divergence
;677
49.4;4. EFFICIENCY MODEL: VIEW MAINTENANCE COST OF A LEGAL REWRITING;677
49.4.1;4.1. View maintenance basics;677
49.4.2;4.2. Cost factor based on number of messages exchanged (CFM );678
49.4.3;4.3. Cost factor based on bytes of data transferred (CFT );678
49.4.4;4.4. Cost factor based on I/O (CFI/O)
;678
49.4.5;4.5 . Total view maintenance cost for a single data update;679
49.4.6;4.6. Overall efficiency of a legal rewriting;679
49.5;5. REVIEW OF THE EVE PROJECT;680
49.5.1;5.1. A relaxed SQL query modcl-E-SQL
;681
49.6;6. IMPLEMENTATION AND EVALUATION;683
49.6.1;6.1. Implementation of the EVE System
;683
49.6.2;6.2. Evaluation and discussion;684
49.6.2.1;6.2.1. Influence of relation distribution on view maintenance cost;685
49.6.2.2;6.2.2. Effect of relation cardinality on QC-value;686
49.6.2.3;6.2.3. Experiments on accuracy of cost model prediction;690
49.7;7. RELATED WORK;694
49.8;8. CONCLUSION;697
49.9;ACKNOWLEDGMENTS;697
49.10;REFERENCES;698
50;WEB DATA EXTRACTION TECHNIQUES AND APPLICATIONS USING THE EXTENSIBLE MARKUP LANGUAGE (XML)
;702
50.1;1. INTRODUCTION;702
50.2;2. WEB DATA EXTRACTION;703
50.2.1;2.1. Why Web data is important;703
50.2.2;2.2. Core technologies behind the World Wide Web;703
50.2.3;2.3. The challenges of web data extraction;704
50.2.4;2.4. Using XML technologies in web data extraction;706
50.3;3. FROM WEB TO SYSTEMS;706
50.3.1;3.1. Business requirements;706
50.3.2;3.2. Database-centric data extraction;707
50.3.3;3.3. Crawler-based data extraction;708
50.3.4;3.4. Challenges;712
50.3.5;3.5. Techniques for effective data extraction;716
50.4;4. OUTLINE OF A DATA EXTRACTION SYSTEM ARCHITECTURE;718
50.4.1;4.1. Data retriever;719
50.4.2;4.2 . Data extractor;719
50.4.3;4.3 . Data checker;721
50.4.4;4.4 . Data exporter;721
50.4.5;4.5. Scheduler;722
50.4.6;4.6. Administrative interface;722
50.4.7;4.7. Pattern designer
;725
50.5;5. DATA EXTRACTION PRINCIPLES;726
50.5.1;5.1. Extraction templates;726
50.5.2;5.2. Extracting XML data from HTML;728
50.5.3;5.3. Pattern creation;728
50.5.4;5.4 . Sample pattern analysis;729
50.6;6. CONCLUSION;733
50.7;BIBLIOGRAPHY;733
51;PRODUCT LIFE CYCLE MANAGEMENT IN THE DIGITAL AGE
;736
51.1;1. INTRODUCTION;736
51.2;2. THE NEW PARADIGM OF LIFE CYCLE MANAGEMENT;737
51.2.1;2.1. Partnerships for sustainabl e product life cycles;740
51.2.1.1;2.1.2. Customer's view;741
51.2.1.2;2.1.3. Life cycle objectives;741
51.2.2;2.2. Economical assessment of product life cycles;742
51.3;3. THE DIGITAL AGE-ACTIVATING HIDDEN PERFORMANCE POTENTIALS;746
51.3.1;3.1. Digital product tracing;748
51.3.2;3.2. Boosting utilization performance;748
51.3.3;3.3. Workplaces on change;750
51.3.4;3.4. Product data management for high data continuity;750
51.4;4. ALLIANCES AND LIFE-LONG NETWORKS;753
51.4.1;4.1. Product life-time value
;755
51.4.2;4.2. Selling benefit instead of usage;756
51.5;5. INDUSTRIAL PROTOTYPES OF DIGITALLY NETWORKED PRODUCT LIFE CYCLE MANAGEMENT
;758
51.5.1;5.1. Example of online process monitoring;758
51.5.2;5.2. Example of the digital factory of the future;759
51.5.2.1;5.2.1. Structure of the platform
;760
51.5.2.2;5.2.2. Data transjer;761
51.5.3;5.3. Example for the web-based control of a technical consumer product;761
51.5.3.1;5.3.1. System structure;761
51.5.3.2;5.3.2. Software-/Hardware architecture
;763
51.5.3.3;5.3.3. Extension of system bounds-afuture vision;763
51.6;6. CONCLUSION AND OUTLOOK;763
51.7;REFERENCES;765
52;PRODUCT REDESIGN AND PRICING IN RESPONSE TO COMPETITOR ENTRY: A MARKETING-PRODUCTION PERSPECTIVE
;767
52.1;1. INTRODUCTION;767
52.2;2. MODEL FORMULATION;770
52.2.1;2.1. Model notation;771
52.2.2;2.2. Attraction and market share models;771
52.2.3;2.3. Profit maximization objective;773
52.3;3. EXISTENCE OF A NASH EQUILIBRIUM;773
52.4;4. PRODUCT AND PRICE RESPONSES TO MARKET ENTRY;775
52.5;5. NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS;777
52.6;6. CONCLUSION;780
52.7;APPENDIX A;783
52.8;APPENDIX B
;786
52.9;REFERENCES;788
53;KNOWLEDGE DISCOVERY BY MEANS OF INTELLIGENT INFORMATION INFRASTRUCTURE METHODS AND THEIR APPLICATIONS
;790
53.1;INTRODUCTION;790
53.1.1;Neural Online Analytical Processing System (NOLAPS);791
53.1.2;Neural Fuzzy Model;795
53.1.3;Cross-platform intelligent information infrastructure;799
53.1.4;Conclusion;801
53.2;REFERENCES;801
54;VOLUME III. EXPERT AND AGENT SYSTEMS;833
55;TECHNIQUES IN KNOWLEDGE-BASED EXPERT SYSTEMS FOR THE DESIGN OF ENGINEERING SYSTEMS
;834
55.1;QUOTATION;834
55.2;1. INTRODUCTION;834
55.3;2. CHARACTERISTICS OF KNOWLEDGE-BASED EXPERT SYSTEMS;838
55.3.1;2.1. Domain knowledge;839
55.3.2;2.2. Inferential knowledge;841
55.4;3. KNOWLEDGE-BASED TECHNIQUES AND THEIR APPLICATION IN ENGINEERING DESIGN
;844
55.4.1;3.1. Implementation-specific knowledge-based techniques;844
55.4.1.1;3.1.1. Rule-based representation
;845
55.4.1.2;3.1.2. Semantic networks
;846
55.4.1.3;3.1.3. Frame-based representation
;846
55.4.1.4;3.1.4. Object-onented representation
;848
55.4.1.5;3.1.5. Logic-based representation
;850
55.4.1.6;3.1.6. Fuzzy logic
;852
55.4.2;3.2. Generic knowledge-based techniques
;853
55.4.2.1;3.2.1. Control strategies
;853
55.4.2.2;3.2.2 . Search strategies
;855
55.4.2.3;3.2.3. Constraint processing
;858
55.4.2.4;3.2.4. Case-based reasoning;860
55.4.2.5;3.2.5. Blackboard architecture
;861
55.5;4. KNOWLEDGE-BASED APPLICATION IN FUNCTIONAL DESIGN;862
55.5.1;4.1. B-FES functional modeling framework;863
55.5.2;4.2. Acquisition of functional design knowledge through two-level knowledge modeling
;864
55.5.3;4.3. Knowledge-based functional representation scheme;867
55.5.3.1;4.3.1. Rule-based representation in rule base
;867
55.5.3.2;4.3.2. Fuzzy logic in FMCDM model base;868
55.5.3.3;4.3.3. Knowledge-basedJunctional representation in an object-oriented behavior base;868
55.5.4;4.4. Knowledge-based functional reasoning strategy;870
55.5.5;4.5. Best-first heuristic search in functional reasoning;872
55.5.5.1;4.5.1. Weighted performallce rating aggregation of a mechanical device
;872
55.5.5.2;4.5.2. Dynamic evaluation index of a design alternative
;874
55.5.6;4.6. Case study;875
55.5.6.1;4.6.1. Problem description and user input;875
55.5.6.2;4.6.2. Automated functional design process and system output;875
55.6;5. CONCLUSION;879
55.7;REFERENCES;881
56;EXPERT SYSTEMS TECHNOLOGY IN PRODUCTION PLANNING AND SCHEDULING
;886
56.1;1. INTRODUCTION;886
56.2;2. THE EXPERT SYSTEMS TECHNOLOGY;887
56.3;3. EXPERT SYSTEMS IN PRODUCTION PLANNING & SCHEDULING;889
56.4;4. EXPERT SYSTEMS RESEARCH IN PRODUCTION PLANNING & SCHEDULING;893
56.5;5. GENESYS: A QUICK CASE STUDY
;895
56.5.1;5.1. Introduction;895
56.5.2;5.2. Problem analysis;896
56.5.3;5.3. The knowledge base;897
56.5.4;5.4. Construction & features;899
56.5.5;5.5. Performance evaluation;901
56.6;6. CONCLUSIONS/RECOMMENDATIONS;902
56.7;REFERENCES;903
57;APPLYING INTELLIGENT AGENT-BASED SUPPORT SYSTEMS IN AGILE BUSINESS PROCESSES;907
57.1;1. INTRODUCTION;907
57.2;2. INTELLIGENT AGENT FRAMEWORK;910
57.2.1;2.1. Intelligent agent system environment;911
57.2.2;2.2 . Architecture of an IA;912
57.2.3;2.3. The agent communication;916
57.2.3.1;2.3.1. The agent communication language;916
57.2.3.2;2.3.2. The content language;917
57.2.3.3;2.3.3. The agent conversation policy
;919
57.3;3. AGENT-BASED OBJECT-ORIENTED DESIGN PROCESSES;924
57.3.1;3.1. An object-oriented approach;926
57.3.1.1;3.1.1. The concept of a design object
;926
57.3.1.2;3.1.2. A design process model formalism for DwO
;927
57.3.1.3;3.1.3. Modular software components;929
57.3.1.4;3.1.4. Object-oriented approach in modular software components;931
57.3.2;3.2. Agent-based system in design process;932
57.4;4. AGENT-BASED SUPPLY CHAIN PROCESSES;936
57.4.1;4.1. Classification of intelligent supply chain agents;937
57.4.2;4.2. Architecture of agents;943
57.4.2.1;4.2.1. Message handling process;943
57.4.2.2;4.2.2. The XML-based contents of the message
;945
57.4.2.3;4.2.3. Basic alient architecture
;947
57.5;5. AGENT-BASED SYSTEMS OF KNOWLEDGE MANAGEMENT;953
57.5.1;5.1. The definition of agents;953
57.5.2;5.2. The architecture of the agent-based system;954
57.5.3;5.3. Process 4: Distribute knowledge passively;956
57.6;6. CONCLUSIONS;958
57.7;REFERENCES;959
58;THE KNOWLEDGE BASE OF A B2B eCOMMERCE MULTI-AGENT SYSTEM
;963
58.1;1. INTRODUCTION;963
58.2;2. RELATED WORK;964
58.3;3. AGENT INFERENCE MODEL (AIM);967
58.4;4. CASE STUDY SCENARIO;969
58.5;5. CREATING THE KNOWLEDGE-BASE;972
58.6;6. ARCHITECTURE;976
58.7;7. IMPLEMENTATION & RESULT;981
58.8;8. CONCLUSION;983
58.9;REFERENCES;983
59;FROM ROLES TO AGENTS: CONSIDERATIONS ON FORMAL AGENT MODELING AND IMPLEMENTATION
;985
59.1;1. INTRODUCTION;985
59.1.1;1.1. Complex systems
;985
59.1.2;1.2. Application protocols;986
59.1.3;1.3. Distributed objects;987
59.2;2. AGENT-ORIENTED PROGRAMMING;987
59.2.1;2.1. Sub-protocols;988
59.2.2;2.2. Agent-UML;988
59.2.3;2.3. From objects- to agent-oriented programming;989
59.2.4;2.4. Method and message passing unification;991
59.2.5;2.5. Internal state control of an agent;992
59.3;3. ROLES AND SCENARIOS;993
59.3.1;3.1. Definitions;993
59.3.2;3.2. Artifacts for development;995
59.3.3;3.3. Roles and scenarios as programming artifacts
;998
59.3.3.1;3.3.1. State control
;998
59.3.3.2;3.3.2. State space inheritance;999
59.3.3.3;3.3.3. Genericity and composability;1001
59.3.4;3.4. On state inheritance;1001
59.4;4. THE DHELI TOOL;1003
59.4.1;4.1. The interaction-oriented programming framework;1003
59.4.2;4.2. System runtime interfaces;1004
59.4.3;4.3. Communication interfaces;1006
59.4.4;4.4. The DHELI language;1007
59.4.4.1;4.4.1. Entities;1007
59.4.4.2;4.4.2. Communication acts;1008
59.4.4.3;4.4.3. Variables, role variables and meta-roles;1010
59.5;5. CONCLUSION AND FUTURE WORK;1011
59.6;REFERENCES;1011
60;AGENT-BASED eLEARNING SYSTEMS: A GOAL-BASED APPROACH
;1013
60.1;1. INTRODUCTION;1013
60.2;2. OVERVIEW OF THE AGENT COMPOSITE GOAL MODEL;1014
60.3;3. EXTENSION OF THE AGENT COMPOSITE GOAL MODEL;1017
60.3.1;3.1. Action selection;1017
60.3.1.1;3.1.1. Bayesian inference
;1017
60.3.1.2;3.1.2. Discussion;1018
60.3.2;3.2. Multi-agent modeling;1018
60.3.2.1;3.2.1. Agent identification;1019
60.3.2.2;3.2.2. Coordination;1019
60.3.2.3;3.2.3. Communication;1020
60.3.2.4;3.2.4. Summary;1020
60.4;4. E-LEARNING MODEL;1020
60.4.1;4.1. Goal-based modeling;1020
60.4.2;4.2. E-learning modeling;1021
60.5;5. E-LEARNING SYSTEM DEVELOPMENT;1024
60.5.1;5.1. E-learning system architecture;1024
60.5.2;5.2. E-Iearning system development;1026
60.6;6. CONCLUSION AND FUTURE WORK;1027
60.6.1;6.1. Conclusion;1027
60.6.2;6.2. Future work;1027
60.7;REFERENCES;1027
61;COMBINING TEMPORAL ABSTRACTION AND DATA MININGMETHODS IN MEDICAL DATA ANALYSIS
;1029
61.1;1. INTRODUCTION;1029
61.2;2. TEMPORAL ABSTRACTION AND DATA MINING METHODS;1031
61.2.1;2.1. Temporal abstraction methods;1031
61.2.2;2.2. Data mining methods;1032
61.3;3. THE HEPATITIS DATABASE AND A FRAMEWORK FOR COMBININGTEMPORAL ABSTRACTION WITH DATA MINING METHODS;1033
61.3.1;3.1. The hepatitis database and problems;1033
61.3.2;3.2. Preprocessing for hepatitis data;1035
61.3.2.1;3.2.1. Feature selection and data reduction
;1035
61.3.2.2;3.2.2. Extraction of data subsets;1036
61.4;4. A TEMPORAL ABSTRACTION METHOD IN THE HEPATITIS DOMAIN;1037
61.4.1;4.1. Determination of typical abstraction patterns;1037
61.4.1.1;4.1.1. The TA primitives;1037
61.4.1.2;4.1.2. Observation and determination of absttattion patterns;1038
61.4.1.3;4.1.3. Relations between TA primitives;1038
61.4.2;4.2. Temporal abstraction algorithms for extracting abstraction patterns;1040
61.4.2.1;4.2.1. Notations and parameters used in the algorithms;1041
61.4.2.2;4.2.2. Abstraction of short-term changed tests;1044
61.4.3;4.3 . Abstraction of long-term changed tests;1044
61.5;5. MINING ABSTRACTED DATA BY DATA MINING METHODS;1045
61.5.1;5.1. The statistical significance of discovered knowledge;1045
61.5.2;5.2. Mining abstracted hepatitis data with system D2MS and Clementine;1046
61.6;6. CONCLUSIONS;1052
61.7;7. ACKNOWLEDGMENTS;1052
61.8;REFERENCES;1052
62;DISTRIBUTED MONITORING: METHODS, MEANS AND TECHNOLOGIES
;1054
62.1;1. INTRODUCTION;1054
62.2;2. FEATURES AND FUNCTIONS OF MONITORING SYSTEMS;1055
62.3;3. MONITORING ARCHITECTURES;1056
62.3.1;3.1. Centralized monitoring;1056
62.3.2;3.2. Hierarchical monitoring;1058
62.3.3;3.3 . Distributed monitoring;1059
62.4;4. SOFTWARE PARADIGMS FOR MONITORING;1061
62.4.1;4.1. Client-Server;1061
62.4.2;4.2. Remote Evaluation (or code pushing);1062
62.4.3;4.3. Code on Demand (or code pulling);1062
62.4.4;4.4. Mobile Agents;1063
62.5;5. SOFTWARE MOBILITY FOR DISTRIBUTED MONITORING;1064
62.5.1;5.1. Location transparency and location awareness;1065
62.5.2;5.2. Mobile code systems;1065
62.5.3;5.3. Mobility mechanisms;1066
62.6;6. TECHNOLOGIES AND STANDARDS FOR MONITORING;1066
62.6.1;6.1. Internet/IETF monitoring;1067
62.6.2;6.2. OSI monitoring;1068
62.6.3;6.3. CORBA;1069
62.6.4;6.4. Java;1070
62.6.5;6.5. SOAP;1071
62.6.6;6.6. OSA, Parlay and Jain;1071
62.7;7. EMERGING APPROACHES TO DYNAMIC MONITORING;1072
62.7.1;7.1. Management by Delegation (MbD);1072
62.7.2;7.2. MbD in the context of internet management;1073
62.7.3;7.3. MbD in the context of OSI management;1074
62.7.4;7.4. Mobile agents for distributed monitoring;1075
62.7.5;7.5. Potential benefits of MA-based management;1077
62.7.6;7.6. Open issues of MA-based management
;1078
62.8;8. CONCLUSIONS;1079
62.9;ACKNOWLEDGEMENTS
;1080
62.10;REFERENCES;1080
63;FINDING PATTERNS IN IMAGE DATABASES
;1085
63.1;1. INTRODUCTION;1085
63.2;2. RELATED WORK;1086
63.2.1;2.1. Preprocessing;1086
63.2.2;2.2. Pattern discovery;1087
63.2.2.1;2.2.1. Association mining in image data
;1087
63.2.2.2;2.2.2. Clustering in image data;1088
63.2.2.3;2.2.3. Classification in image data
;1089
63.2.3;2.3. Image-specific considerations;1090
63.2.3.1;2.3.1. Semantic information;1090
63.2.3.2;2.3.2. Spatial relationship;1090
63.3;3. VIEWPOINT PATTERN DISCOVERY;1091
63.3.1;3.1. Overview;1092
63.3.2;3.2 . Algorithm ViewpointMiner;1092
63.4;4. EXPERIMENTS;1095
63.4.1;4.1. General category images;1095
63.4.2;4.2. Retinal images;1098
63.4.3;4.3. Kitchen plan images;1100
63.5;5. CONCLUSION;1101
63.6;REFERENCES;1102
64;COGNITION TECHNIQUES AND THEIR APPLICATIONS
;1104
64.1;1. EVOLUTION OF THE MODEL OF COGNITION;1104
64.1.1;1.1. The cycles of model of cognition;1105
64.2;2. SCOPE OF REALIZATION OF THE ACQUISITION CYCLE;1109
64.3;3. BUILDING PERCEPTION CYCLE;1116
64.3.1;3.1. Need for map building;1117
64.3.2;3.2. Map building by depth first search;1118
64.3.2.1;3.2.1. Algorithms for map-building by depth first search
;1120
64.3.2.2;3.2.2. A illustration of procedure traverse boundary
;1122
64.3.2.3;3.2.3. An illustration of procedure map building
;1123
64.3.2.4;3.2.4. Simulation on Superscoutt-ll Linux based graphics interface
;1123
64.3.3;3.3. Construction of 3D world map by depth first search;1124
64.4;4. LEARNING AND COORDINATION CYCLE;1129
64.4.1;4.1. Learning for obstacle avoidance;1130
64.4.1.1;4.1.1. The constraints in the navigation process;1131
64.4.1.2;4.1.2. Learning for local guidance through Neural Net
;1133
64.4.1.3;4.1.3. Building the Third Neural Net;1136
64.4.2;4.2. Planning by bi-directional associative memory;1139
64.4.2.1;4.2.1. Temporal associative memory in mobile robot navigation;1140
64.4.3;4.3. Planning using evolutionary algorithm;1144
64.4.3.1;4.3.1. Simulation for EC planning;1148
64.5;5. CONCLUSIONS;1148
64.6;REFERENCES;1150
65;VOLUME IV. INTELLIGENT SYSTEMS;1182
66;ARTIFICIAL INTELLIGENCE AND INTEGRATED INTELLIGENT SYSTEMS IN PRODUCT DESIGN AND DEVELOPMENT*
;1183
66.1;1. INTRODUCTION;1183
66.2;2. OVERVIEW OF EVOLUTION OF PRODUCT-PROCESS DESIGN METHODOLOGIES
;1184
66.2.1;2.1. Automated & integrated design
;1185
66.2.2;2.2. Concurrent engineering & concurrent design;1186
66.2.2.1;2.2.1. Concurrent engineering
;1186
66.2.2.2;2.2.2. Design for X
;1187
66.2.2.3;2.2.3. Product life cycle management
;1188
66.2.3;2.3. Intelligent computer-aided design;1188
66.2.4;2.4. Virtual prototyping;1189
66.2.5;2.5. Computer supported collaborative design
;1189
66.3;3. ARTIFICIAL INTELLIGENCE IN PRODUCT-PROCESS DESIGN;1190
66.3.1;3.1. Intelligent product design;1190
66.3.2;3.2. Intelligent process planning;1191
66.3.3;3.3. Intelligent production system layout and design;1192
66.3.4;3.4. Intelligent simulation;1193
66.4;4. INTELLIGENT SYSTEMS FOR PRODUCT-PROCESS DESIGN;1193
66.4.1;4.1. Symbolic reasoning systems
;1193
66.4.2;4.2. KBE and coupling intelligent systems;1194
66.4.3;4.3. Artificial neural network systems;1195
66.4.4;4.4. Genetic algorithms and systems;1197
66.4.5;4.5. Case-based reasoning systems;1199
66.4.5.1;4.5.1. Case-based reasoning model;1200
66.4.5.2;4.5.2. Analogical reasoning for design problem solving
;1201
66.4.5.3;4.5.3. Design prototypes and cases
;1203
66.4.6;4.6. Integrated & distributed intelligent systems;1203
66.4.7;4.7. Hybrid intelligent systems;1206
66.5;5. A GENERIC FRAMEWORK FOR INTEGRATED INTELLIGENT DESIGN;1209
66.5.1;5.1. Issues and requirements for integrated intelligent design;1210
66.5.2;5.2. Framework for integrated intelligent design;1214
66.5.2.1;5.2.1. Working environment;1214
66.5.2.2;5.2.2. AI protocol based integrated intelligent design;1214
66.5.2.3;5.2.3. Architecture of framework
;1216
66.5.2.3.1;(1)Designer Communication Layer;1216
66.5.2.3.2;(2) Core System and Control Layer;1217
66.5.2.3.3;(3) Application Layer;1218
66.6;6. IMPLEMENTATIONS OF INTEGRATED INTELLIGENT DESIGN SYSTEMS;1218
66.6.1;6.1. Integrated distributed collaborative design and assembly planning;1219
66.6.2;6.2. AI-supported internet-enabled virtual prototyping;1221
66.6.2.1;(1 ) Distributed Artificial Intelligence/Multi-Agent System;1222
66.6.2.2;(2) Feature-Based Virtual Model Representation;1223
66.6.2.3;(3)Neural Networks for Modeling Module/System's Dynamics;1223
66.6.2.4;(4) Optimization with Genetic Algorithms;1223
66.6.2.5;(5) Case-based Design;1223
66.6.3;6.3. A web-based knowledge intensive design support system;1225
66.6.3.1;6.3.1. Knowledge-based systems as knowledge servers
;1225
66.6.3.2;6.3.2 . WebDMME framework and implementation
;1226
66.7;7. CONCLUSIONS;1228
66.8;REFERENCES;1230
67;INTELLIGENT PATIENT MONITORING IN THE INTENSIVE CARE UNIT AND THE OPERATING ROOM
;1240
67.1;1. INTRODUCTION;1240
67.2;2. TEMPORAL PATTERN RECOGNITION;1245
67.2.1;2.1. Template-based methods;1246
67.2.2;2.2 . Signal processing of the ECG;1249
67.3;3. REASONING METHODS;1251
67.3.1;3.1. Fuzzy logic;1251
67.3.2;3.2 . Eviden ce-based reasoning;1254
67.3.3;3.3. Bayesian networks;1257
67.3.4;3.4 . Artificial neural networks;1259
67.4;4. INTELLIGENT INTENSIVE CARE UNIT MONITORS;1263
67.5;5. INTELLIGENT ANAESTHESIA MONITORS;1265
67.5.1;5.1. Intelligent alarms;1268
67.6;6. SMART SENSORS;1269
67.6.1;6.1. Detection of esophageal intubation;1270
67.6.2;6.2 . Depth of anaesthesia;1271
67.6.3;6.3. Cardiac output;1274
67.7;7. AUTOMATIC CONTROL IN THE ICU AND OR;1276
67.7.1;7.1. Mean arterial blood pressure;1277
67.7.2;7.2. Depth of anaesthesia;1282
67.7.3;7.3. Multiple drug infusion-cardiac output;1283
67.8;8. INTERFACE DESIGN;1285
67.8.1;8.1. Display of anaesthesia information;1287
67.8.2;8.2. Data display for intelligent monitors;1288
67.9;9. DISCUSSION;1292
67.10;ACKNOWLEDGEMENTS;1293
67.11;REFERENCES;1293
68;MISSION CRITICAL INTELLIGENT SYSTEMS
;1300
68.1;1. INTRODUCTION;1300
68.2;2. DEFINITIONS;1301
68.3;3. REAL TIME EXPERT SYSTEMS;1304
68.4;4. FAULT TOLERANCE IN INTELLIGENT SYSTEMS;1307
68.4.1;4.1. Failure detection and recovery in intelligent systems;1309
68.4.2;4.2. An architecture for a dependable intelligent system;1310
68.5;5. DISTRIBUTED MISSION CRITICAL INTELLIGENT SYSTEMS (DMCIS);1312
68.6;6. COORDINATION IN DISTRIBUTED INTELLIGENT SYSTEMS;1314
68.6.1;6.1. MINUTE: Multi issue negotiation under time constrained environments;1315
68.6.2;6.2. TRACE-Task and resource allocation in a computational economy;1317
68.6.3;6.3. MAS organization in TRACE;1318
68.6.4;6.4. Task allocation protocol;1318
68.6.5;6.5. Resource allocation protocol;1319
68.6.6;6.6. Experiments;1322
68.6.6.1;6.6.1. Reduction in decommitments
;1322
68.6.6.2;6.6.2. Fairness of resource allocation;1322
68.6.6.3;6.6.3. Adaptiveness of the TRACE MAS
;1323
68.7;7. CONCLUSIONS;1324
68.8;REFERENCES;1324
69;AN INTELLIGENT HYBRID SYSTEM FOR BUSINESS FORECASTING
;1327
69.1;1. INTRODUCTION;1327
69.2;2. PROBLEM STATEMENT;1328
69.3;3. OBJECTIVE;1329
69.4;4. NEW AREAS FOR IRS APPLICATIONS;1330
69.5;5. ARCHITECTURE OF IFS;1330
69.6;6. OPERATING PROCEDURE OF IFS;1331
69.7;7. INTELLIGENT BUSINESS FORECASTER;1332
69.7.1;7.1. Architecture of IBF
;1333
69.7.2;7.2. Operating procedure;1336
69.7.2.1;7.2.1. Self-organised learning;1336
69.7.2.2;7.2.2. Identification of Fuzzy Rules
;1337
69.7.2.3;7.2.3 . Supervised learning
;1338
69.7.2.4;7.2.4. Forecasting and retraining
;1339
69.7.3;7.3. Case studies;1340
69.7.3.1;7.3.1. IBF vs multiple regression method
;1340
69.7.3.1.1;7.3.1.1. CASE I.;1340
69.7.3.1.2;7.3.1.2. COMPARISON WITH A MULTIPLE REGRESSION MODEL.;1342
69.7.3.2;7.3.2. IBF vs conventional neural networks
;1343
69.7.3.2.1;7.3.2.1. CASE II.;1343
69.7.3.2.2;7.3.2.2. CASE III.;1348
69.7.3.2.3;7.3.2.3. COMPARISON WITH CONVENTIONAL NEURAL NETWORKS.
;1351
69.8;8. INTELLIGENT SCENARIO GENERATOR;1355
69.8.1;8.1. Truth valued flow inference
;1359
69.8.2;8.2. Architecture;1360
69.8.3;8.3. Learning algorithm;1363
69.8.4;8.4. An illustrative example;1365
69.9;9. JUDGMENTAL ADJUSTMENT OF OBJECTIVE FORECASTS;1370
69.9.1;9.1. The FSD method;1372
69.9.1.1;9.1.1. The FSD model
;1372
69.9.1.2;9.1.2. Formatting the problem
;1375
69.9.1.3;9.1.3. Combining Experts' Adjustments
;1376
69.9.1.3.1;a) Construction of the "a" Vector;1377
69.9.1.3.2;b) Construction of "R" Matrix;1378
69.9.1.3.3;c) Tra nsformat ion;1378
69.9.2;9.2. The fuzzy adjuster;1379
69.9.3;9.3. Validation;1380
69.9.4;9.3.1. Experimentation
;1381
69.9.5;9.3.2. Experimental results;1381
69.10;10. THE IFS SOFTWARE;1385
69.10.1;10.1. System manager;1385
69.10.2;10.2. Intelligent business forecaster;1385
69.10.2.1;10.2.1. IBF Setting up procedure
;1386
69.10.2.2;10.2.2. IBF Operating procedure;1386
69.10.3;10.3. Intelligent scenario generator;1386
69.10.3.1;10.3.1. ISG Setting up procedure
;1386
69.10.3.2;10.3.2. ISG Operating procedure
;1386
69.10.4;10.4. Fuzzy adjuster;1387
69.10.5;10.5. Database;1387
69.10.6;10.6. Knowledge base;1387
69.10.7;10.7 . User interface;1387
69.11;11. CONCLUSIONS;1387
69.12;REFERENCES;1388
70;INTELLIGENT SYSTEMS TECHNOLOGY IN THE FAULT DIAGNOSIS OF ELECTRONIC SYSTEMS
;1392
70.1;1. INTRODUCTION;1392
70.2;2. THE DIAGNOSTIC PROCESS;1393
70.3;3. A SIMPLIFIED MODEL OF MACHINE INTELLIGENCE;1393
70.4;4. TRADITIONAL APPROACHES;1394
70.4.1;4.1. Rule-based systems;1394
70.4.2;4.2. Fault (decision) trees;1395
70.5;5. MODEL-BASED APPROACHES;1396
70.5.1;5.1. Fault models (or fault dictionaries);1396
70.5.2;5.2. Causal models;1398
70.5.3;5.3. Models based on structure and behaviour;1398
70.5.4;5.4 . Diagnostic inference model;1401
70.6;6. APPROACHES BASED ON LEARNING;1403
70.6.1;6.1. Case-based reasoning;1403
70.6.2;6.2. Explanation-based learning;1404
70.6.3;6.3. Learning knowledge from data;1405
70.7;7. FUZZY LOGIC APPROACHES;1405
70.8;8. NEURAL NETWORK APPROACHES;1407
70.9;9. HYBRID APPROACHES;1411
70.10;10. DIAGNOSTIC STANDARDS;1413
70.11;11. COMMENTARY;1413
70.11.1;11.1. Rule-based approaches;1414
70.11.2;11.2. Model-based approaches;1414
70.11.3;11.3. Case-based approaches
;1415
70.11.4;11.4. Fuzzy logic and neural networks;1415
70.11.5;11.5. Hybrid approaches;1416
70.12;12. FUTURE RESEARCH DIRECTIONS;1416
70.13;13. TOOLS FOR THE RAPID DEPLOYMENT OF AI-BASED DIAGNOSTIC SOLUTIONS
;1418
70.13.1;13.1. Knowledge representation;1418
70.13.2;13.2. Diagnostic inference;1421
70.13.3;13.3. Summary;1425
70.14;14. CONCLUSIONS;1425
70.15;REFERENCES;1426
71;TECHNIQUES IN THE UTILIZATION OF THE INTERNET AND INTRANETS IN FACILITATING THE DEVELOPMENT OF CLINICAL DECISION SUPPORT SYSTEMS IN THE PROCESS OF PATIENT CARE
;1430
71.1;WHY DO WE NEED IT TO COORDINATE CARE?;1430
71.1.1;Prevalence of chronic disease;1430
71.1.2;Poor quality of care and escalating health care costs;1431
71.1.3;Communication and coordination issues;1431
71.1.4;Promoting support for chronic disease management;1433
71.1.5;Chapter outline;1433
71.2;DEFINING KEY CONCEPTS;1434
71.2.1;Evidence-based medicine;1434
71.2.2;Guideline;1434
71.2.3;Protocol;1438
71.2.4;Care plan;1440
71.2.5;Pathway;1441
71.2.6;Workflow;1444
71.2.7;Relationship between the concepts;1447
71.3;INTERNET/INTRANET-ENABLED HEALTH INFORMATION NETWORKS;1447
71.4;CLINICAL GUIDELINES AND DECISION SUPPORT;1451
71.5;INTEGRATING GUIDELINES AND WORKFLOW INTO EHR DESIGN;1456
71.5.1;Instruction;1459
71.5.2;ERR system architecture for CIGs and workflows;1462
71.5.3;Case study 1-hypertension in diabetes
;1465
71.5.4;Case study 2-early supported discharge;1467
71.6;CONCLUSION;1467
71.7;ACKNOWLEDGEMENTS;1472
72;RISK ANALYSIS AND THE DECISION-MAKING PROCESS IN ENGINEERING
;1477
72.1;1. INTRODUCTION;1477
72.2;2. THE NEED FO R RISK MANAGEMENT;1477
72.3;3. RISK;1478
72.4;4. DECISION-MAKING PROCESS;1480
72.4.1;4.1. Basic concepts;1480
72.4.2;4.2. Decision trees;1481
72.4.3;4.3. Defining utility criteria;1482
72.5;5. RISK-ANALYSIS BASED DECISION PROCESS;1483
72.5.1;5.1. General framework for integrating risk to the decision making process;1484
72.5.2;5.2. Final remarks;1487
72.6;6. ACCEPTABILITY OF RISK;1488
72.7;7. OPTIMIZATION;1491
72.7.1;7.1. Basic optimization concepts;1491
72.7.2;7.2. Cost of saving human lives;1493
72.7.3;7.3. Life cycle costing;1495
72.7.3.1;7.3. 1. General aspects;1496
72.7.3.2;7.3.2. Basics oflife cycle costing;1497
72.8;8. EXAMPLES;1498
72.8.1;8.1. Allocation of resources to transport networks;1498
72.8.1.1;8.1.1. Basic considerations;1498
72.8.1.2;8.1.2. Decision criteria;1498
72.8.1.3;8.1.3. Accessibility
;1499
72.8.1.4;8.1.4. Optimization of resource allocation;1500
72.8.1.5;8.1.5. Case study
;1501
72.8.1.6;8.1.6. Summary and final remarks
;1503
72.8.2;8.2. Design of structural systems;1503
72.8.2.1;8.2.1. Decision criteria;1503
72.8.2.2;8.2.2. Probabilistic model of theground motion
;1503
72.8.2.3;8.2.3. Model of the probability of failure of the structural system
;1505
72.8.2.4;8.2.4. Estimation of cost;1505
72.8.2.5;8.2.5. Optimization;1506
72.8.2.6;8.2.6. Summary and final remarks
;1507
72.9;9. CONCLUSIONS;1508
72.10;REFERENCES;1508
73;MECHATRONICS AND SMART STRUCTURES DESIGN TECHNIQUES FOR INTELLIGENT PRODUCTS, PROCESSES, AND SYSTEMS
;1510
73.1;1. INTRODUCTION;1510
73.2;2. ANALYSIS OF INDUCED-STRAIN ACTUATION;1512
73.2.1;2.1. Actuator-structure interaction;1512
73.2.1.1;2.1.1. Displacement analysis
;1513
73.2.1.2;2.1.2. Output energy analysis
;1516
73.2.2;2.2. Induced-strain actuators with compliant support;1517
73.2.2.1;2.2.1. Displacement analysis;1517
73.2.2.2;2.2.2. Output energy analysis;1518
73.2.3;2.3 . Displacement-amplified induced-strain actuators;1519
73.2.3.1;2.3.1. Displacement analysis;1519
73.2.3.2;2.3.2. Output energy analysis
;1521
73.2.3.3;2.3.3. Optimal kinematic gain, G, for a given value of .
;1522
73.2.4;2.4. Electric response;1525
73.3;3. ANALYSIS OF INDUCED-STRAIN ACTUATION FOR DYNAMIC APPLICATION;1528
73.3.1;3.1. Mechanical response;1531
73.3.2;3.2. Electric response;1533
73.4;4. DESIGN OF SMART STRUCTURES WITH INDUCED-STRAIN ACTUATORS;1535
73.4.1;4.1. Efficient static design;1537
73.4.2;4.2. Efficient dynamic design;1539
73.4.3;4.3. Quasi-static dynamic operation;1541
73.4.4;4.4. Undamped dynamic operation;1542
73.4.5;4.5. The damped dynamic system;1543
73.4.6;4.6. Design example of induced-strain actuation application;1545
73.5;5. DESIGN OF EMBEDDED ULTRASONICS SMART STRUCTURES FOR STRUCTURAL HEALTH MONITORING
;1550
73.5.1;5.1. PWAS Ultrasonic transducers;1550
73.5.2;5.2. Shear-layer coupling between PWAS and structure;1554
73.5.2.1;5.2.1. Symmetric case;1556
73.5.2.2;5.2.2. Antisymmetric case;1557
73.5.2.3;5.2.3. Shear lag solution;1558
73.5.2.4;5.2.4. Pin-force model;1563
73.5.2.5;5.2.5 . Energy transier between the PWAS and the structure
;1565
73.5.2.6;5.2.6 . Conditions for optimum energy transfer
;1567
73.5.3;5.3. Lamb waves excited by PWAS;1568
73.5.3.1;5.3.1. Lamb wave solution under nonuniform shear-stress boundary excitation
;1569
73.5.3.2;5.3.2. Ideal-bonding solution
;1575
73.5.4;5.4. Pitch-catch PWAS experiments
;1578
73.5.4.1;5.4.1. Experimental setup;1578
73.5.4.2;5.4.2. Excitation signal;1580
73.5.4.3;5.4.3. Lamb mode tuning;1581
73.5.4.4;5.4.4. Pitch-catch results
;1583
73.6;6. SUMMARY AND CONCLUSIONS;1583
73.7;BIBLIOGRAPHY;1587
74;ENGINEERING INTERACTION PROTOCOLS FOR MULTIAGENT SYSTEMS
;1589
74.1;1. INTRODUCTION;1589
74.1.1;1.1. Interaction protocols in multiagent systems
;1589
74.1.2;1.2. Communication protocols;1590
74.1.2.1;1.2.1. Communication protocols in distributed systems
;1590
74.1.2.2;1.2.2. Communication protocol engineering;1590
74.1.3;1.3. Engineering interaction protocols;1591
74.1.3.1;1.3.1. One approach
;1591
74.1.3.2;1.3.2. Some tools.;1593
74.1.4;1.4. Overview of the beghera application;1594
74.2;2. THE ANALYSIS STAGE;1596
74.3;3. THE FORMAL DESCRIPTION STAGE;1598
74.3.1;3.1. Towards a new interaction modeling language;1599
74.3.2;3.2. A component-based approach;1600
74.3.3;3.3. Definition of micro-protocols;1601
74.3.4;3.4. The CPDL language;1604
74.3.5;3.5 . Graphical modeling languages for protocol's representation;1605
74.3.6;3.6. UAML and UAMLe languages;1608
74.3.7;3.7. A tool for supporting agent interaction protocol design;1608
74.4;4. THE VALIDATION STEP;1610
74.4.1;4.1. The reachability analysis;1611
74.4.2;4.2. One example;1611
74.4.3;4.3. The model-checking approach;1613
74.5;5. THE PROTOCOL SYNTHESIS STAGE;1613
74.5.1;5.1. Phase role;1613
74.5.2;5.2. Two methods for the protocol synthesis;1614
74.5.2.1;5.2.1. Protocol synthesis approach;1614
74.5.2.2;5.2.2. Direct execution of protocols in CPDL language
;1615
74.5.2.3;5.2.3. Comparison of these two approaches;1616
74.6;6. THE CONFORMANCE TESTING STAGE;1617
74.7;7. CONCLUSION AND PERSPECTIVES;1618
74.8;REFERENCES;1620
75;VOLUME V. NEURAL NETWORKS, FUZZY THEORY AND GENETIC ALGORITHMS
;1653
76;NEURAL NETWORK SYSTEMS TECHNOLOGY AND APPLICATIONS IN CAD/CAM INTEGRATION
;1654
76.1;1. INTRODUCTION;1654
76.2;2. ARTIFICIAL NEURAL NETWORKS;1655
76.3;3. ANN TECHNIQUES FOR FEATURE RECOGNITION;1655
76.3.1;3.1. The topology;1655
76.3.1.1;3.1.1. Feedforward networks
;1655
76.3.1.2;3.1.2. Competitive networks;1656
76.3.1.3;3.1.3. Recurrent networks;1657
76.3.1.4;3.1.4. The three-Iayer feed-forward neural network
;1658
76.3.1.5;3.1.5. The four-layer feed-forward neural network
;1659
76.3.1.6;3.1.6. The five-layer, perceptrons quasi-neural network
;1659
76.3.2;3.2. Input representation;1659
76.3.2.1;3.2.1. 2D feature representation
;1660
76.3.2.2;3.2.2. Face adjacency matrix code;1660
76.3.2.3;3.2.3. Face score vector;1660
76.3.2.4;3.2.5. F-adjaccncy matrix and V-adjacency matrix
;1661
76.3.2.5;3.2.6. 2D input patterns of 3D feature volume;1665
76.3.2.6;3.2.7. A vector based on the partitioned view-contours of a given object
;1665
76.3.2.7;3.2.8. Simplified sheleton
;1666
76.3.3;3.3. The output format
;1666
76.3.3.1;3.3.1. Each neuron corresponding to a feature class
;1666
76.3.3.2;3.3.2. Neurons representing the information of the recognised feature;1667
76.3.3.3;3.3.3. A matrix file containing the code for each recognised feature and its machining directions
;1667
76.3.4;3.4. The training method;1667
76.3.4.1;3.4.1. Back propagation algorithms
;1667
76.3.4.2;3.4.2. Conjugate gradient algorithm by the authors
;1668
76.3.4.3;3.4.3. Training method by Prabhakar and Henderson
;1669
76.3.5;3.5. Summary of ANN-based feature recognition
;1669
76.4;4. ANN TECHNIQUES FOR CAPP;1669
76.4.1;4.1. The topology;1670
76.4.1.1;4.1.1. Feedforward network
;1670
76.4.1.2;4.1.2. Hopfield network
;1670
76.4.1.3;4.1.3. Brain-State-in-a-Box (BSB);1672
76.4.1.4;4.1.4. MAXNET ;1672
76.4.2;4.2. Input representation;1673
76.4.2.1;4.2.1. Standardised image data
;1673
76.4.2.2;4.2.2. Input vector with value ranging from 0 to 1
;1674
76.4.2.3;4.2.3. Input vector with integer value;1674
76.4.2.4;4.2.4. Input vector in binary form
;1674
76.4.2.5;4.2.5. Input vector in mixed form
;1674
76.4.3;4.3. Output format;1675
76.4.3.1;4.3.1. Output vector in ordered binary form
;1675
76.4.3.2;4.3.2. Output vector with special values;1675
76.4.3.3;4.3.3. One-unit output in binary form
;1675
76.4.4;4.4. Training method;1676
76.4.4.1;4.4. 1. Unsupervised learning algorithm
;1676
76.4.4.2;4.4.2. Back-propagation
;1676
76.4.5;4.5. Summary of ANN-based CAPP
;1678
76.5;5. ANN-BASED HYBRID APPROACHES TO CAPP;1678
76.5.1;5.1. CAPP using expert system and ANN techniques
;1678
76.5.1.1;5.1.1. Expert system control module
;1678
76.5.1.2;5.1.2. Neural network control module
;1679
76.5.2;5.2. CAPP using ANN, fuzzy logic and expert system techniques
;1680
76.5.3;5.3. CAPP using GA, ANN and Fuzzy logic techniques
;1682
76.5.3.1;5.3.1. Input representation
;1682
76.5.3.2;5.3.2. Output format
;1685
76.5.3.3;5.3.3. Topology and the training method of the proposed neural network
;1685
76.5.4;5.4. Summary of ANN-based hybrid methods;1685
76.6;6. CONCLUSIONS;1685
76.7;7. REFERENCES;1686
77;NEURAL NETWORK SYSTEMS TECHNOLOGY AND APPLICATIONS IN PRODUCT LIFE-CYCLE COST ESTIMATES
;1689
77.1;1. INTRODUCTION;1689
77.2;2. BACKGROUND;1690
77.2.1;2.1. General product development;1690
77.3;3. AN APPROXIMATE ESTIMATION METHOD FOR THE PRODUCT LIFE CYCLE COST USING ANNS
;1691
77.3.1;3.1. The concepts;1691
77.3.2;3.2. Development of the life cycle cost factors
;1693
77.3.3;3.3. Development of product attributes
;1694
77.3.3.1;3.3.1. General product attributes
;1695
77.3.3.2;3.3.2. Maintainability attributes
;1695
77.3.3.3;3.3.3. Determining the final product attributes using statistical analysis
;1696
77.4;4. A CASE STUDY
;1699
77.4.1;4.1. Data collection
;1700
77.4.2;4.2. Development of training algorithms
;1701
77.4.2.1;4.2.1. Backpropagation algorithm
;1701
77.4.2.2;4.2.2. Development of training algorithm with backpropagation
;1702
77.4.3;4.3. Testing and the results;1703
77.4.4;4.4. Discussion;1705
77.5;5. CONCLUSIONS AND FUTURE WORKS;1707
77.6;REFERENCES;1709
78;NEURAL NETWORK SYSTEMS TECHNOLOGY IN THE ANALYSIS OF FINANCIAL TIME SERIES
;1710
78.1;INTRODUCTION AND CONTEXT;1711
78.2;TIME SERIES AND THEIR TECHNIQUES;1714
78.2.1;Financial time series;1715
78.2.2;Components of financial time series:
;1715
78.2.3;Switching time series;1726
78.3;NEURAL NETWORKS FUNDAMENTALS;1727
78.3.1;Artificial neural networks;1728
78.3.2;The single neuron element;1729
78.3.3;Training recurrent networks;1742
78.3.4;Validation;1744
78.4;DATA PREPARATION FOR NEURAL NETWORKS;1745
78.4.1;Detrending;1746
78.4.2;Smoothing;1746
78.4.3;Normalizing and scaling the data;1747
78.4.4;Structuring the data;1747
78.4.5;Time series and neural networks applications;1749
78.5;APPENDIX;1759
78.6;BIBLIOGRAPHY;1760
79;FUZZY RULE EXTRACTION USING RADIAL BASIS FUNCTION NEURAL NETWORKS IN HIGH-DIMENSIONAL DATA
;1762
79.1;INTRODUCTION;1762
79.2;1. FUZZY SET THEORY: BASIC DEFINITIONS AND TERMINOLOGY;1765
79.2.1;1.1. Fuzzy sets;1765
79.2.2;1.2. Linguistic variables and linguistic values;1766
79.2.3;1.3. Membership function formulation and parametrization;1766
79.2.4;1.4. Fuzzy set operations;1769
79.3;2. FUZZY REASONING AND FUZZY INFERENCE SYSTEMS;1770
79.3.1;2.1. Fuzzy if-then rules;1771
79.3.2;2.2. Approximate reasoning;1771
79.3.3;2.3. Fuzzy inference systems;1772
79.4;3. RADIAL BASIS FUNCTION NEURAL NETWORKS;1775
79.4.1;3.1. Definition;1776
79.4.2;3.2. Training;1778
79.4.2.1;3.2.1. Hidden layer definition :;1778
79.4.2.2;3.2.2 . Output layer definition;1778
79.4.2.3;3.2.3. Functional Equivalence to FIS;1779
79.5;4. ANFIS ARCHITECTURE;1780
79.6;5. OPTIMAL DESIGN OF RBFN BASED ON FUZZY CLUSTERING;1781
79.6.1;5.1. Fuzzy Clustering and similarity measures;1781
79.6.2;5.2. Toeplitz covariance matrix estimator;1784
79.6.3;5.3. Optimal number of clusters;1786
79.6.4;5.4. Output layer supervised training and rule extraction;1787
79.6.5;5.5. Algorithm: elliptical radial basis function network design;1789
79.7;6. EXPERIMENTS;1789
79.7.1;6.1. Synthetic data experiments;1790
79.7.1.1;6. 1. 1. Experiment 1;1790
79.7.1.2;6.1.2. Experiment 2;1792
79.7.2;6.2. Benchmark data experiments;1796
79.8;7. SUMMARY;1798
79.9;REFERENCES;1799
80;FUZZY DECISION MODELING OF PRODUCT DEVELOPMENT PROCESSES
;1802
80.1;1. INTRODUCTION;1802
80.2;2. MODELLING PRODUCT DEVELOPMENT INFORMATION WITH FUZZY SETS;1804
80.2.1;2.1. Introduction to fuzzy set theory;1804
80.2.2;2.2. Representing imprecision and preference information with fuzzy sets;1805
80.2.3;2.3 . Measures of possibility and necessity
;1806
80.3;3. A FUZZY SET APPROACH FOR PRIORITIZATION OF DESIGN REQUIREMENTS
;1807
80.3.1;3.1. Problem formulation;1807
80.3.2;3.2. A fuzzy outranking preference model to prioritize design requirements
;1809
80.3.2.1;3.2.1. Representing imprecise information in QFD;1809
80.3.2.2;3.2.2. A fuzzy outranking preference model for prioritizing design requirements;1810
80.3.3;3.3. Illustrative example;1813
80.4;4. A FUZZY SET APPROACH FOR SELECTION OF DESIGN CONCEPTS;1815
80.4.1;4.1. Problem formulation;1815
80.4.2;4.2. Fuzzy outranking preference model for concept selection;1817
80.4.2.1;4.2.1. Construction offuzzy outranking relations;1817
80.4.2.2;4.2.2. Determination ofnon-dominated design concepts;1818
80.4.3;4.3. Illustrated example;1819
80.5;5. A FUZZY SET APPROACH FOR SCHEDULING OF PRODUCT DEVELOPMENT PROJECTS
;1823
80.5.1;5.1. Problem formulation;1823
80.5.2;5.2. A fuzzy scheduling model to minimize schedule risk;1824
80.5.2.1;5.2.1. Comparison of two fuzzy temporal parameters
;1824
80.5.2.2;5.2.2. Performance measure of fuzzy project scheduling
;1825
80.5.2.3;5.2.3. Fuzzy scheduling with a genetic algorithm
;1825
80.5.3;5.3. lllustrative example;1829
80.6;6. CONCLUSION;1831
80.7;REFERENCES;1831
81;EVALUATION AND SELECTION IN PRODUCT DESIGN FOR MASS CUSTOMIZATION
;1834
81.1;1. INTRODUCTION;1834
81.2;2. CURRENT STATUS OF RESEARCH;1835
81.2.1;2.1. Design alternatives evaluation and selection;1836
81.2.2;2.2. Product family design evaluation and selection;1837
81.3;3. CUSTOMER-DRIVEN PRODUCT FAMILY DESIGN FOR MASS CUSTOMIZATION
;1838
81.3.1;3.1. Strategies and technical challenges for mass customization;1838
81.3.2;3.2. Customer-driven design for mass customization;1839
81.3.3;3.3. Module-based product family design;1841
81.3.4;3.4. Knowledge support framework for CDFMC;1843
81.4;4. PRODUCT FAMILY DESIGN EVALUATION AND SELECTION
;1844
81.4.1;4.1. Knowledge decision support scheme;1845
81.4.2;4.2. Customization/evaluation metrics;1846
81.4.3;4.3. Fuzzy clustering and design ranking methodology;1847
81.4.3.1;4.3.1. Fuzzy clustering analysis for design
;1847
81.4.3.2;4.3.2. Fuzzy ranking for design
;1850
81.4.3.3;4.3.3. Simplified fuzzy ranking for design
;1851
81.4.4;4.4. Evaluation of product family design alternatives;1852
81.4.4.1;4.4.1. Heuristic evaluation function
;1852
81.4.4.2;4.4.2. Evaluation index
;1852
81.4.5;4.5. Neural network adjustment for membership functions;1853
81.5;5. CASE STUDY AND SYSTEM PROTOTYPE;1855
81.5.1;5.1. Case study;1855
81.5.2;5.2. System prototype;1855
81.6;6. DISCUSSION;1858
81.7;7. SUMMARY AND CONCLUSIONS;1859
81.8;REFERENCES;1860
82;GENETIC ALGORITHM TECHNIQUES AND APPLICATIONS IN MANAGEMENT SYSTEMS
;1864
82.1;1. INTRODUCTION;1864
82.1.1;1.1. Resource-constrained scheduling problem
;1864
82.1.2;1.2. Classes of the generalized problem for resource-constrained scheduling;1865
82.1.3;1.3. Structure of this chapter;1867
82.2;2. RELATED WORK ON SCHEDULING;1867
82.2.1;2.1. Exact solution methods;1867
82.2.2;2.2. Heuristic solution methods;1868
82.3;3. INTRODUCTION TO GENETIC ALGORITHM;1868
82.3.1;3.1. The concept of genetic algorithms;1868
82.3.2;3.2. A simple example of genetic algorithms;1869
82.3.3;3.3. Packages of genetic algorithm components;1869
82.3.4;3.4. Applications of GA and when not to use;1871
82.4;4. SURVEY OF GA TECHNIQUES ON SCHEDULING;1871
82.4.1;4.1. Representation issues;1872
82.4.1.1;4.1.1. Indirect representation;1872
82.4.1.2;4. 1.2. Direct representation;1874
82.4.2;4.2 . Operators;1874
82.4.3;4.3. Comparison between different approaches;1875
82.4.4;4.4 . Other methods and issues
;1876
82.5;5. APPLY GENERIC ALGORITHMS TO SOFTWARE ENGINEERING;1877
82.5.1;5.1. Software project management;1877
82.5.2;5.2. Introduction to SPMNET;1878
82.5.3;5.3. GA for software project management;1878
82.5.3.1;5.3.1. Task-basedmodel;1878
82.5.3.1.1;1. Model;1879
82.5.3.1.2;2. A Test Problem and its Results;1880
82.5.3.2;5.3.2. Timeline-based model;1881
82.5.3.2.1;1. Model;1881
82.5.3.2.2;2. Numerical Experiments;1881
82.6;6. CONCLUSION AND FUTURE WORK;1881
82.7;REFERENCES;1882
83;ASSEMBLY SEQUENCE OPTIMIZATION USING GENETIC ALGORITHMS
;1885
83.1;1. INTRODUCTION;1885
83.2;2. BACKGROUND TO ASSEMBLY PLANNING AND OPTIMISATION;1886
83.3;3. THE ASSEMBLY SEQUENCE PLANNING PROBLEM;1888
83.4;4. LITERATURE REVIEW ON ASP;1889
83.5;5. THE APPROACH USED TO S/O THE ASP PROBLEM;1890
83.6;6. A MODEL OF THE ASSEMBLY PROCESS;1891
83.6.1;6.1. The graph of liaisons and the table ofliaisons;1892
83.6.2;6.2. The wave model of the assembly process;1894
83.7;7. A MODEL FOR THE ASSEMBLY SEQUENCES;1895
83.7.1;7.1. Representation of SLMC assembly sequences;1895
83.7.2;7.2. Generalisation of the representation for non-SLMC assembly plans;1896
83.8;8. A MODEL OF THE PRODUCT FOR ASP AND THE AUTOMATIC GENERATION OF FEASIBLE ASSEMBLY SEQUENCES
;1898
83.8.1;8.1. Background;1898
83.8.2;8.2. Intrinsic precedence relations;1901
83.8.3;8.3. Guided search algorithm for generation of assembly sequences considering only IPR
;1902
83.8.4;8.4. Extrinsic precedence relations;1903
83.8.5;8.5. Implementation of EPR
;1904
83.8.5.1;8.5.1. EPRfor individual liaisons;1905
83.8.5.2;8.5.2. Boolean relations;1905
83.8.5.3;8.5.3. EPR for groups of liaisons
;1906
83.8.5.4;8.5.4. Definition of the assembly table;1908
83.9;9. QUALITY MEASURES FOR ASP AND THE FITNESS FUNCTION;1909
83.9.1;9.1. The fitness function for a single optimisation criterion;1911
83.9.2;9.2. The fitness function for multi-criteria optimisation;1912
83.10;10. THE GENETIC ALGORITHM FOR THE OPTIMISATION OF ASSEMBLY SEQUENCES
;1914
83.10.1;10.1. Automatic generation of assembly sequences by guided search;1914
83.10.2;10.2. The crossover operator;1915
83.10.3;10.3. The fitness function;1916
83.10.4;10.4. The selection process;1916
83.11;11. A CASE STUDY;1916
83.12;12. CONCLUSIONS;1919
83.13;13. REFERENCES;1921
84;KERNEL-BASED SELF-ORGANIZED MAPS TRAINED WITH SUPERVISED BIAS FOR GENE EXPRESSION DATA MINING
;1923
84.1;1. INTRODUCTION;1923
84.2;2. KERNEL-BASED SELF-ORGANIZED MAP ADAPTATION;1924
84.3;3. THE KSDG-SOM ALGORITHM;1925
84.3.1;3.1. Initialization phase;1927
84.3.2;3.2. Training run adaptation phase;1927
84.3.2.1;3.2.1. Map adaptation rules;1928
84.3.2.2;3.2.2. Evaluation of the map training run convergence condition;1929
84.3.3;3.3. Expansion phase;1929
84.3.4;3.4. Fine tuning adaptation phase;1929
84.3.5;3.5. Evaluation of classification performances;1930
84.3.6;3.6. Model selection step;1930
84.3.7;3.7. Node deletion;1931
84.4;4. THE EXPANSION PROCESS;1931
84.5;5. CRITERIA FOR CONTROLLING THE KSDG-SOM DYNAMIC GROWING;1934
84.6;6. APPLICATION;1936
84.7;7. CONCLUSIONS;1938
84.8;8. ACKNOWLEDGMENT;1938
84.9;REFERENCES;1939
85;COMPUTATIONAL INTELLIGENCE FOR FACILITY LOCATION ALLOCATION PROBLEMS
;1940
85.1;1. INTRODUCTION;1940
85.1.1;1.1. Facility location problem;1940
85.1.2;1.2. Location-allocation problem;1943
85.1.3;1.3. Mathematical programming;1944
85.1.4;1.4. Organization;1945
85.2;2. BACKGROUND;1945
85.2.1;2.1. Branch-and-bound;1946
85.2.2;2.2. Lagrange relaxation and sub-gradient method;1949
85.2.3;2.3. Local search;1953
85.2.4;2.4 . Genetic algorithm;1954
85.2.5;2.5. Simulated annealing;1955
85.3;3. HYBRID METHOD FOR LOCATION-ALLOCATION PROBLEM;1957
85.3.1;3.1. Nested GA (GA + GA);1958
85.3.2;3.2. GA + Branch and Bound;1958
85.3.3;3.3. GA + Lagrange;1959
85.4;4. MIXED TYPE CHROMOSOME AND ALTERNATE LOCATION ALLOCATION;1961
85.5;5. CURRENT OPTIMIZATION SOFTWARE;1962
85.6;6. EXPERIMENTS;1964
85.7;7. CONCLUSIONS;1969
85.8;REFERENCES;1970
86;INDEX;1972



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.