E-Book, Englisch, 0 Seiten
Leskovec / Rajaraman / Ullman Mining of Massive Datasets
3. Auflage 2020
ISBN: 978-1-108-75131-5
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 0 Seiten
ISBN: 978-1-108-75131-5
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the MapReduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream-processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets, and clustering. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Wirtschaftswissenschaften Betriebswirtschaft Management Wissensmanagement
Weitere Infos & Material
1. Data mining; 2. MapReduce and the new software stack; 3. Finding similar items; 4. Mining data streams; 5. Link analysis; 6. Frequent itemsets; 7. Clustering; 8. Advertising on the web; 9. Recommendation systems; 10. Mining social-network graphs; 11. Dimensionality reduction; 12. Large-scale machine learning; 13. Neural nets and deep learning; Index.