E-Book, Englisch, 273 Seiten, eBook
Li / Wong Natural Computing for Unsupervised Learning
1. Auflage 2018
ISBN: 978-3-319-98566-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 273 Seiten, eBook
Reihe: Unsupervised and Semi-Supervised Learning
ISBN: 978-3-319-98566-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Introduction.- Part I – Basic Natural Computing Techniques for Unsupervised Learning.- Hard Clustering using Evolutionary Algorithms.- Soft Clustering using Evolutionary Algorithms.- Fuzzy / Rough Set Systems for Unsupervised Learning.- Unsupervised Feature Selection using Evolutionary Algorithms.- Unsupervised Feature Selection using Artificial Neural Networks.- Part II – Advanced Natural Computing Techniques for Unsupervised Learning.- Hybrid Genetic Algorithms for Feature Subset Selection in Model-Based Clustering.- Nature-Inspired Optimization Approaches for Unsupervised Feature Selection.- Co-Evolutionary Approaches for Unsupervised Learning.- Mining Evolving Patterns using Natural Computing Techniques.- Multi-objective Optimization for Unsupervised Learning.- Many-objective Optimization for Unsupervised Learning.- Part III – Applications.- Unsupervised Identification of DNA-binding Proteins using Natural Computing Techniques.- Parallel Solution-based Natural Clustering Techniques on Railway Engineering data.- Natural Computing Techniques for Community Detection on Online Social Networks.- Big Data Challenges and Scalability in Natural Computing for Unsupervised Learning.- Conclusion.