Buch, Englisch, 129 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 230 g
A Game-theoretic Approach
Buch, Englisch, 129 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 230 g
Reihe: SpringerBriefs in Computer Science
ISBN: 978-981-99-6920-3
Verlag: Springer Nature Singapore
Mobile crowdsensing (MCS) is emerging as a novel sensing paradigm in the Internet of Things (IoTs) due to the proliferation of smart devices (e.g., smartphones, wearable devices) in people’s daily lives. These ubiquitous devices provide an opportunity to harness the wisdom of crowds by recruiting mobile users to collectively perform sensing tasks, which largely collect data about a wide range of human activities and the surrounding environment. However, users suffer from resource consumption such as battery, processing power, and storage, which discourages users’ participation. To ensure the participation rate, it is necessary to employ an incentive mechanism to compensate users’ costs such that users are willing to take part in crowdsensing.
This book sheds light on the design of incentive mechanisms for MCS in the context of game theory. Particularly, this book presents several game-theoretic models for MCS in different scenarios. In Chapter 1, the authors present an overview of MCS and state the significance of incentive mechanism for MCS. Then, in Chapter 2, 3, 4, and 5, the authors propose a long-term incentive mechanism, a fair incentive mechanism, a collaborative incentive mechanism, and a coopetition-aware incentive mechanism for MCS, respectively. Finally, Chapter 6 summarizes this book and point out the future directions.
This book is of particular interest to the readers and researchers in the field of IoT research, especially in the interdisciplinary field of network economics and IoT.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Ambient Intelligence, RFID, Internet der Dinge
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Handheld Programmierung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
Weitere Infos & Material
Chapter 1: A Brief Introduction.- Chapter 2: Long-term Incentive Mechanism for Mobile Crowdsensing.- Chapter 3: Fair Incentive Mechanism for Mobile Crowdsensing.- Chapter 4: Collaborative Incentive Mechanism for Mobile Crowdsensing.- Chapter 5: Coopetition-aware Incentive Mechanism for Mobile Crowdsensing.- Chapter 6: Summary.