E-Book, Englisch, Band 30, 474 Seiten, eBook
Reihe: Computational Biology
Liò / Zuliani Automated Reasoning for Systems Biology and Medicine
1. Auflage 2019
ISBN: 978-3-030-17297-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 30, 474 Seiten, eBook
Reihe: Computational Biology
ISBN: 978-3-030-17297-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part I: Model Checking.- Chapter 1. Model Checking Approach to the Analysis of Biological Systems.- Chapter2. Automated Reasoning for the Synthesis and Analysis of Biological Programs.- Chapter 3. Statistical Model Checking based Analysis Techniques of Biological Networks.- Chapter 4. Models, Devices, Properties and Verification for the Artificial Pancreas.- Chapter 5. Using State Space Exploration to Determine How Gene Regulatory Networks Constrain Mutation Order in Cancer Evolution.- Part II: Formal Methods and Logic.- Chapter 6. Set-based Analysis for Biological Modelling.- Chapter 7. Logic and Linear Programs to Understand Cancer Response.- Chapter 8. Logic-Based Formalization of System Requirements for Integrated Clinical Environments.- Chapter 9. Balancing prescriptions with Constraint Solvers.- Chapter 10. Metastable Regimes and Tipping Points of Biochemical Networks with Potential Applications in Precision Medicine.- Part III: Stochastic Modelling and Analysis.-Chapter 11. Stochastic Spatial Modelling of the Remyelination Process in Multiple Sclerosis Lesions.- Chapter 12. Approximation Techniques for Stochastic Analysis of Biological Systems.- Chapter 13. A Graphical Approach for the Hybrid Modelling of Intracellular Calcium Dynamics Based on Coloured Hybrid Petri Nets.- Chapter 14. Methods for Personalised Delivery Rate Computation for IV Administered Anesthetic Propofol.- Part IV: Machine Learning and Artificial Intelligence.- Chapter 15. Towards the Integration of Metabolic Network Modelling and Machine Learning for the Routine Analysis of High-Throughput Patient Data.- Chapter 16. Opportunities and Challenges in Applying Artificial Intelligence to Bioengineering.- Chapter 17. Deep Learning with Convolutional Neural Networks for Histopathology Image Analysis.