Buch, Englisch, 325 Seiten, Format (B × H): 182 mm x 258 mm, Gewicht: 876 g
A First Course for Engineers and Scientists
Buch, Englisch, 325 Seiten, Format (B × H): 182 mm x 258 mm, Gewicht: 876 g
ISBN: 978-1-108-84360-7
Verlag: Cambridge University Pr.
This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
Weitere Infos & Material
1. Introduction; 2. Supervised learning: a first approach; 3. Basic parametric models and a statistical perspective on learning; 4. Understanding, evaluating and improving the performance; 5. Learning parametric models; 6. Neural networks and deep learning; 7. Ensemble methods: Bagging and boosting; 8. Nonlinear input transformations and kernels; 9. The Bayesian approach and Gaussian processes; 10. Generative models and learning from unlabeled data; 11. User aspects of machine learning; 12. Ethics in machine learning.