Buch, Englisch, 512 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 785 g
Reihe: Synthese Library
What Has Become of Them?
Buch, Englisch, 512 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 785 g
Reihe: Synthese Library
ISBN: 978-90-481-8029-5
Verlag: Springer Netherlands
The present anthology has its origin in two international conferences that were arranged at Uppsala University in August 2004: “Logicism, Intuitionism and F- malism: What has become of them?” followed by “Symposium on Constructive Mathematics”. The rst conference concerned the three major programmes in the foundations of mathematics during the classical period from Frege’s Begrif- schrift in 1879 to the publication of Godel’ ¨ s two incompleteness theorems in 1931: The logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert’s formalist and proof-theoretic programme. The main purpose of the conf- ence was to assess the relevance of these foundational programmes to contemporary philosophy of mathematics. The second conference was announced as a satellite event to the rst, and was speci cally concerned with constructive mathematics—an activebranchofmathematicswheremathematicalstatements—existencestatements in particular—are interpreted in terms of what can be effectively constructed. C- structive mathematics may also be characterized as mathematics based on intuiti- isticlogicand,thus,beviewedasadirectdescendant ofBrouwer’sintuitionism. The two conferences were successful in bringing together a number of internationally renowned mathematicians and philosophers around common concerns. Once again it was con rmed that philosophers and mathematicians can work together and that real progress in the philosophy and foundations of mathematics is possible only if they do. Most of the papers in this collection originate from the two conferences, but a few additional papers of relevance to the issues discussed at the Uppsala c- ferences have been solicited especially for this volume.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
Weitere Infos & Material
Introduction: The Three Foundational Programmes.- Introduction: The Three Foundational Programmes.- Logicism and Neo-Logicism.- Protocol Sentences for Lite Logicism.- Frege’s Context Principle and Reference to Natural Numbers.- The Measure of Scottish Neo-Logicism.- Natural Logicism via the Logic of Orderly Pairing.- Intuitionism and Constructive Mathematics.- A Constructive Version of the Lusin Separation Theorem.- Dini’s Theorem in the Light of Reverse Mathematics.- Journey into Apartness Space.- Relativization of Real Numbers to a Universe.- 100 Years of Zermelo’s Axiom of Choice: What was the Problem with It?.- Intuitionism and the Anti-Justification of Bivalence.- From Intuitionistic to Point-Free Topology: On the Foundation of Homotopy Theory.- Program Extraction in Constructive Analysis.- Brouwer’s Approximate Fixed-Point Theorem is Equivalent to Brouwer’s Fan Theorem.- Formalism.- “Gödel’s Modernism: On Set-Theoretic Incompleteness,” Revisited.- Tarski’s Practice and Philosophy: Between Formalism and Pragmatism.- The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory.- Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics.- Beyond Hilbert’s Reach?.- Hilbert and the Problem of Clarifying the Infinite.